Towards an experimental violation of a motional-state Bell's inequality using ultracold helium

<u>Kieran Thomas</u>^{*a*}, Y. Wang^{*a*}, R.J. Lewis-Swan^{*b,c*}, K.V. Kheruntsyan^{*d*}, B.M. Henson^{*a*}, S.S. Hodgman^{*a*}, and A.G. Truscott^{*a*}

^aDepartment of Quantum Science and Technology, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia.

^bHomer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, Norman, OK 73019, USA.

^cCenter for Quantum Research and Technology, The University of Oklahoma, Norman, OK 73019, USA. ^dSchool of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia.

We present our experimental progress towards demonstrating quantum non-locality in a matter wave system via a Rarity-Tapster interferometer. The entangled state for the system is generated using two *s*-wave scattering halos created by colliding helium Bose-Einstein condensates. The theoretical basis for this method is discussed, and its suitability is experimentally quantified. Thus far we have achieved an interferometric visibility of V = 0.42(9), corresponding to a maximum CSHS-Bell parameter of S = 1.1(1), for the Clauser-Horne-Shimony-Holt (CHSH) version of the Bell inequality, between atoms separated by \sim 4 correlation lengths. This constitutes a significant step towards a demonstration of a Bell inequality violation for motional degrees of freedom of massive particles and possible measurements of quantum effects in a gravitationally sensitive system.