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Impurity-Medium Systems

L. Landau, “Uber die Bewegung der
Elektronen im Kristallgitter,” (1933)

10. ELECTRON MOTION IN CRYSTAL LATTICES

It is well known that in a periodic field an electron can move without resistance.
When the lattice is slightly distorted at a point, this only leads to scattering
of the electrons at this point. This, however, does not mean the electron is
trapped at this point. According to a familiar theorem in wave mechanics
this will only be possible if, in addition possible if, in addition to continuous
eigenvalues, the distorted lattice would also have discrete eigenvalues. But
this is not the case for slight distortions.

Let us consider a free electron, subjected in a certain region to a weak field.
we can then demonstrate in accordance with Peierls® that the solution of the
Schrddinger equation at E = 0 bas no nodes at weak fields, that is it corre-
sponds to the lowest possible eigenvalue. For, when determining the solution
of the Schriodinger equation

2mU
Vy=—y (1)
for small U in the form
py=1+y, (2)
where y is also small, one obtains:
2mU
V’Z — k! = (3)‘

If U decreases at infinity more rapidly than 1/, then this equation has a
solution finite throughout, and whose values are proportional to those of U.
For a sufficiently small U one therefore has || < 1 hence 1 + y vanishes
nowhere. (When denoting the dimension of the region where U is different
from zero by a, we find that a discrete eigenvalue can only exist when mUa®/4*
is of the order of unity.)

An analogous proof is possible for a periodic lattice by taking as starting
point the solution corresponding to the lowest eigenvalue which is consequently
nodeless for a strictly periodic field, and by writing the ““distorted” y in the
form py =y, + 1

Hence a small distortion does not yet lead to the possible trapping of the
electron. This possibility only exists for large distortions. We can now diffe-
rentiate between two essentially different cases. For, the energetically most
favourable state of the total system may correspond, firstly, to the undistorted
lattice and the electron moving about “freely” and, secondly, the electron
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trapped at a strongly distorted region. In the first case, the electron cannot
be trapped at all by the lattice. This situation seems to be realised in the case
of diamond. In the second case, the electron can only be trapped when passing
over an energy barrier. For, as already stated, in the case of 2 small distortion,
_the eigenvalues of the electron are not changed. Hence the energy variation
of the total system consists solely in the distortion energy and thus is essen-
tially positive. We must therefore expect that the trapping of the electron is
associated with activation effects. This corresponds to the situation in the case
of NaCl which cannot be discoloured by X-rays at low temperatures. It would
be interesting to verify in this effect the exp(— A/kT) law and to determine
the value of the activation energy A.

Peker (1946) Landau & Peker (1948)

Fréhlich(1950)

Polaron: impurity + quantum medium
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Eler Chevy's ansatz with 1p-h

aron |

Molecule-hole Continuum

Attractive Polaron

P. Massignan and G. M. Bruun
Eur. Phys. J. D (2011)



SWINBURNE

Salient Features of Polaron | R

Eler Chevy's ansatz with 1p-h

E/ €r Olga Goulko, et al., PRA (2016)

“u.. Repulsive Polaron | .
- — Diagrammatic

2t | Monte Carlo kFa=1 1
I
1.5} ;"']
|| Dark |
continuum .: i
Attractive Polaron

| 1/kF.a

P. Massignan and G. M. Bruun
Eur. Phys. J. D (2011)



SWIN

WINBURNE

Anderson's 0rt||ogona||tv Catastrophe ESN—

O
e® ¢0.

Heavy impurity

¢k(1)k(2) k(l)k(2) ¢k(1)k(2)k(3) k(l)k(2)k(3)

o o

Zo6(w — E/Nh)




SWIN

SWINBURNE

Anderson's Orthogonality Catastrophe LSS

T ee—

§b0 ¢k ¢k(1)k(2) k(l)k(2) ¢k(1)k(2) (3) k(l)k(z)k(3)

Heavy impurity
AO
(w— E/h)?

Catastrophe!

0w — EIn) 2= | |®

X-ray absorption spectra |
in metals

>

Q) Mahan (1967) Noziers and deDominicis (1969)



SWIN

Fermi Edge Singularity

Attractive  Repulsive B o | Secu
121 A ITCC gas state
— k.a=0.5 _— ==
€F - > —
k=15 T T =
k.a=3.0 -l S
:'-0 -
k a=6.0 2| @ | ==
J i -
0.8 | ol «
€pl -9 -
Q‘L IUmol>
X |
<) repulsive
g ' pfreegas | ate
0.4 f L o b &
! [ & T =
=) r A
=L
\ | - -
g =02
N\
0 b— » ; . : l_.t OF 8l.0O.
e - B 0 0 IQ/I Knap, et al,, PRX (2012ﬁ9'fcp)

r R. Schmidt, et al., Rep. Prog. Phys. (2018)



Chevy's ansatz /T-matrix approach @
for mobile impurity: ..
Nishida, PRL (2015); Yi & Cui, PRA (2015);

Pierce, Leyronas , and Chevy, PRL (2019);
Hu, JW, Zhou, and Liu, PRA (2022)

BCS Hamiltonian in spinor
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Finite Temperature
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+ Experimental realizable: 6Li-133Cs

+ Multidimensional Spectrum.

+ p+ip topology superfluid.

+ An exact model to investigate polaron physics;
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© YSR features for magnetic impurity;
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Future Extension - - @-:
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van-der-Waals potential
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A Heavy Impurity in
a BGS supertluid

Interacting Hamiltonian: Hp=H+V=H+ Z Volk — )6 Cq

(6 eg) = ()
D= Z[VT(k Q)cic, — V,(q - k)h*h]+2f/l(0)
k

Bllunear Form:
K= =Ko+ wg+ Z i he(K, Q)

kq
Single-particle Hamiltonian:
— Vik —q) 0

exact formula of FDA:
S(¢) = e7"@det[1 — A + ethilg =ty ]

0.k,q

u%/£

AL o
0r Eysr ka
A e

—p




SWIN

Yu-Shiba-Rusinov bound state ESie

0.4
Magnetic Impurity - positive
037 Vl —( Branch
0.2 1
YSR
0.1F State
)
< U
=
0.1
-0.2 ¢
| Negative
03+ Branch

-0.4



1
0.8 1S(@)| ~ £°
06 F-—kra=0 (a) kray
| ——kpa = —2,A ~ 0.40Ep
kra — 0o, A =~ 0.69FEF 1S(H)| ~ 7@
04 H—kra=2,A~1.02EF
10° ¢ e _
\ \ ‘" , ()] ~ 10
| S@) | ~ 17"
(b) kFCLT = 2

10"k y N o

10™! 10" tEp 10! 10°




N 0.8

0.7
0.05 0.2

4
0 50,60 70 80 90

A D e—iEd 4 D o—iE Z.8(w — E,) o~ Eq
5() = De "+ D,e A@) <y,  imEl/x ~ ReE
Z=|D] F (@-ReE, P +(mE, 2~ @ REEr



- SWIN e
Superiluid Gap Dependence

kFaT —_ 2 kFCll — 2




Finite Temperature
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(b) ksT = 0.15E;

YSR Features
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o= Y, 7,0 =Y (k|| k)
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Asymptotic Behaviour:
S(t) ~ D e " + D e Bt + D e B <

Nonmagnetic Impurity « =<, k§
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det(exp(A)) = exp(tr(A)).
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