Accurate determination of the magnetic hyperfine anomaly in atomic caesium from muonic-atom experiments

G. Sanamyan, B. Roberts, and J. Ginges

School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia

arXiv:2209.05099 [physics.atom-ph]

Outline

Motivation

Muonic atoms

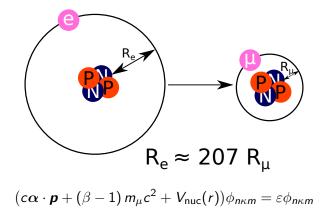
Muonic atoms? QED effects Hyperfine structure in muonic atoms

Hyperfine structure

Calculations of hyperfine structure Sensitivity to F(r) for muonic and electronic systems Extraction of F(r) from muonic measurements Relative BW effect in caesium

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

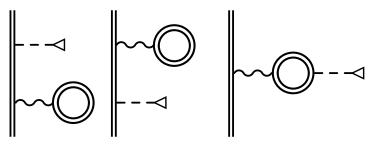
Summary


Motivation

To increase the precision of atomic calculations

- Push atomic calculations to 0.1% precision,
 - Improved benchmarking of atomic theory,
- Remove nuclear structure uncertainties (most limiting),
 - Predictions of different nuclear models deviate by 0.5%,
- Muonic atoms are highly sensitive to nuclear structure,
 - Have been used historically to study nuclear structure,
 - New muonic atom experiment underway at Paul Scherrer Institute.

Muonic atoms


Muonic atoms?

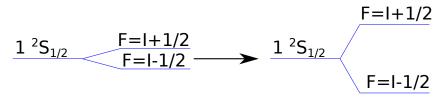
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Muonic atoms QED effects

QED effects are dominated by vacuum polarisation consisting of electric and magnetic loop contributions:

 $V_{
m nuc}(r)
ightarrow V_{
m nuc}(r) + V_{
m Ueh}^{
m EL}(r)$

 $h_{\rm hfs}(r)
ightarrow h_{\rm hfs}(r) + h_{\rm Ueh}^{\rm ML}(r)$


・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト ・

Muonic atoms

Hyperfine structure in muonic atoms

Interaction between the spin of a muon (or electron) and nuclear magnetic moments \rightarrow hyperfine splitting

Closer proximity to the nucleus \rightarrow larger hyperfine splitting:

 Bohr-Weiskopf (BW) effect (on the order of 1% of the hyperfine constant in electronic system compared to the order of 100% in muonic systems).

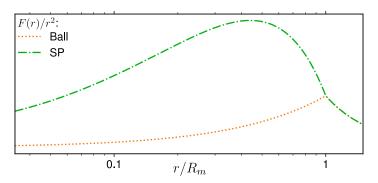
Calculations of hyperfine structure

Relativistic expression for the hyperfine interaction is

$$h_{\mathsf{hfs}} = lpha rac{oldsymbol{\mu} \cdot (oldsymbol{r} imes oldsymbol{lpha})}{r^3} F(r),$$

 μ - nuclear magnetic moment

F(r) - describes the nuclear magnetisation distribution:

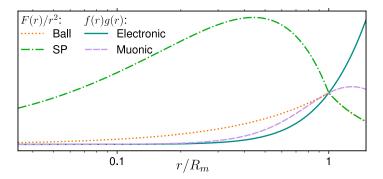

$$F(r) = \left(\frac{r}{R_m}\right)^3 \Theta(R_m - r) + \Theta(r - R_m) - \text{uniform spherical model}$$
$$F(r) = \left(\frac{r}{R_m}\right)^3 \left[1 + (\alpha_L - \alpha_S \xi) \ln\left(\frac{r}{R_m}\right)^3\right] \Theta(R_m - r) + \Theta(r - R_m)$$

- nuclear single particle model

 $\Theta(r)$ - step function R_m - effective magnetic nuclear radius α_L , α_S , and ξ - orbital and spin fractions of magnetic moment and spin asymmetry term

Sensitivity to F(r) for muonic and electronic systems

$$\phi(\mathbf{r}) = \frac{1}{r} \begin{pmatrix} f(r)\Omega_{\kappa m}(\mathbf{n}) \\ ig(r)\Omega_{-\kappa m}(\mathbf{n}) \end{pmatrix} \rightarrow \mathcal{A}_{1s} = \frac{4}{3} \frac{\alpha}{I} \frac{1}{m_p} \frac{\mu}{\mu_N} \int_0^\infty dr \frac{f(r)g(r)}{r^2} F(r) dr$$



uniform spherical model - "Ball", nuclear single particle model - "SP"

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● ○ ● ● ● ●

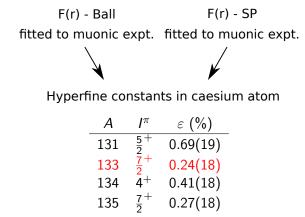
Sensitivity to F(r) for muonic and electronic systems

$$\phi(\mathbf{r}) = \frac{1}{r} \begin{pmatrix} f(r)\Omega_{\kappa m}(\mathbf{n}) \\ ig(r)\Omega_{-\kappa m}(\mathbf{n}) \end{pmatrix} \rightarrow \mathcal{A}_{1s} = \frac{4}{3} \frac{\alpha}{I} \frac{1}{m_p} \frac{\mu}{\mu_N} \int_0^\infty dr \frac{f(r)g(r)}{r^2} F(r) dr$$

uniform spherical model - "Ball", nuclear single particle model - "SP"

Extraction of F(r) from muonic measurements

$$(c\alpha \cdot \mathbf{p} + (\beta - 1) m_{\mu}c^{2} + V_{nuc}(r))\phi_{n\kappa m} = \varepsilon\phi_{n\kappa m}$$


$$\downarrow f(r)g(r)$$

$$\mathcal{A}_{1s} = \frac{4}{3}\frac{\alpha}{l}\frac{1}{m_{p}}\frac{\mu}{\mu_{N}}\int_{0}^{\infty}dr\frac{f(r)g(r)}{r^{2}}F(r)$$

$$\downarrow \mathcal{A}_{1s}$$
Fit to muonic experimental measurements

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Relative BW effect in caesium

Hyperfine structure of ¹³³Cs is crucial for APV studies. Our result reduces the nuclear structure uncertainty in the hyperfine structure down to 0.2%!
Final value of 0.24(18)% can be compared to predictions of different nuclear models: 0.67% (Ball), 0.21% (SP), 0.19(14)% (SP-WS), 0.22% (CM).

Summary

- Nuclear structure uncertainty in caesium hyperfine structure is reduced down to 0.2%,
 - The result for ¹³³Cs has implications for the error analysis of theoretical atomic calculations,
 - Further implications on previous ¹³³Cs hyperfine structure calculations,
 - Confirms the validity of the nuclear single-particle model (we advocate for the future use of single particle model in atomic calculations instead of the commonly used uniform spherical model),

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Emphasises the importance of future muonic (and *H*-like) atom experiments for further reducing uncertainties in BW effect.