Non-equilibrium dynamics of a strongly interacting Fermi gas

P. Dyke^{*a,b*}, A. Pennings^{*a,b*}, I. Herrera^{*a,b*}, S. Hoinka^{*a,b*}, M. Davis^{*b,c*}, S. Musilino^{*d*}, D. J. M. Ahmed-Braun^{*d*}, V.E. Colussi^{*d*}, S. J. J. M. F. Kokkelmans^{*d*}, H Kurkjian^{*e*} and C.J. Vale^{*a,b*}

^aOptical Sciences Centre, Swinburne University of Technology, Melbourne, Victoria 3122, Australia

^bARC Centre of Excellence in Future Low-Energy Electronics Technologies, Australia.

^cSchool of Mathematics and Physics, University of Queensland, Queensland 4072, Australia.

^dEindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

^eLaboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, France

Ultracold Fermi gases with tunable interactions provide a versatile test bed for studying quantum manybody phenomena; unlocking new ways to study condensed matter physics in an environment free of defects. We study the dynamics in a two-component strongly interacting Fermi gas following a quench of the inter-atomic interactions. In a first study, we measure the time dependent formation of pairs and their Bose-Einstein condensate after a quench of the interactions across the normal to the superfluid phase transition. We find that the short range correlations evolve far more rapidly than the long-range correlations needed to form a Bose-Einstein condensate. Finally, we perform a quench of the interactions within the superfluid phase, which excites oscillations of the superfluid order parameter, commonly known as the Higgs mode. Using two-photon Bragg spectroscopy, we directly observe the amplitude oscillations and obtain measurements of the pairing gap and damping rate as a function of temperature. Our data show good agreement with time-dependent BCS theory.