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Non-equilibrium dynamics

§ Non-equilibrium phenomena is ubiquitous in nature.

§ Expansion of the early universe
§ Constant erosion of mountains
§ Many-body systems

§ Highly relevant for quantum material/technologies:

§ Cold atoms provide a convenient setting for studying non-equilibrium physics

§ Timescales for dynamics are on the µs – ms scale.
§ Relevant parameters can be easily tuned, e.g., interaction strength
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Non-equilibrium experiments in cold atoms

Bosons
M. Davis et al., Formation of Bose-Einstein condensates,  Universal 
Themes of Bose-Einstein Condensation.

Excitations beyond Bogoliubov Theory
S. B. Papp et al., Phys. Rev. Lett. 101, 135301 (2008).
R. Lopes et al., Phys. Rev. Lett. 118, 210401 (2017).

Prethermalized states
M. Gring et al., Science 337, 1318 (2012).
S. Erne et al., Nature 563, 225 (2018).

Contact
R. J. Wild et al., Phys. Rev. Lett. 108, 145305 (2012).
P. Makotyn et al, Nature Physics 10, 116 (2014).
R. J. Fletcher et al., Science 355, 377 (2017).

Universal Dynamics
C. Eigen et al., Nature 563, 221 (2018).

Fermions
M. W. Zwierlein et al., PRL 94, 180401 (2005)
T. Harrison et al., PRR 3, 023205 (2021)
A. Behrle et al., Nature Physics 14 781 (2018)
B. Ko et al., Nature Physics 15 (2019) 
X.-P. Liu et al., PRR 3, (2019).
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• Slow quench compared to the many-body timescale
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Two-component Fermi gas
• We study balanced mixtures of cold fermionic 6Li atoms in two distinct states
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Two-component Fermi gas

S. Hoinka Thesis

r0 ⌧ n�1/3 ⌧ a

r0 ⌧ �dB

• We study balanced mixtures of cold fermionic 6Li atoms in two distinct states

• In dilute Fermi systems, details of short-range potential U(r) are not relevant
⟹ universal system fully specified by s-wave scattering length a

• s-wave interactions tuned via broad Feshbach resonance
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Fermi gas preparation

Transverse profile of the TEM01 mode

Harmonic radial trapping 
potential from residual B field

"𝜔!
2𝜋 = 105 Hz

"𝜔"
2𝜋 = 22 Hz

Trapping Frequencies

z (arb.)

𝑁~3×10#

T/ TF = 0.1
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Continuous Symmetry Breaking

• Breaking of a continuous symmetry generally leads to two types of collective modes…

(i) Goldstone mode (gapless)

(ii) Higgs mode (gapped)

Elementary particles, CDW 
superconductors, liquid He-3…

Shimano, Tsuji,  Ann. Rev. Cond. Matt. 11, 103 (2020)
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Continuous Symmetry Breaking

• Breaking of a continuous symmetry generally leads to two types of collective modes…

(i) Goldstone mode (gapless)

(ii) Higgs mode (gapped)

Elementary particles, CDW 
superconductors, liquid He-3…

Shimano, Tsuji,  Ann. Rev. Cond. Matt. 11, 103 (2020)

• Rapid interaction quenches in the superfluid regime allow measurements  of the gap frequency.
Stringari PRA 2012 
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Higgs Mode in Cold Atoms

Dipolar gases: Pfau, Ferlaino, Modugno
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Kickstarting the Higgs mode
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Kickstarting the Higgs mode

S. Hoinka Thesis
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Higgs Mode 

Simulations (@ TU/E) suggest we 
expect Higgs oscillations 

Musolino, Ahmed-Braun, Collusi, Kokkelmans (2020)
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Higgs Mode 

Measurements of N0/N integrate over 
full cloud so damp rapidly

Simulations (@ TU/E) suggest we 
expect Higgs oscillations 

Musolino, Ahmed-Braun, Collusi, Kokkelmans (2020)
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§ The Bragg excitation is achieved with focused
Bragg beams.

§ Bragg beams intersect where the density is
almost homogeneous.

§ Bragg Spectroscopy is resonant with pairs
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~k2
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• The frequency, amplitude and damping rate
are determined by fitting a damped sinusoid.

Δ𝑋$%& = 𝐴 + 𝐵 sin(2Δ𝑡 + 𝐶)/𝑡'

Probing the Higgs mode
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Higgs mode amplitude 



32

Higgs mode amplitude 

• Amplitude oscillations for a range of different cloud 
temperatures were measured.

• Oscillations are plotted against hold time relative to
the Fermi time tF at the cloud centre.
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Higgs mode amplitude 

• Amplitude oscillations for a range of different cloud 
temperatures were measured.

• Oscillations are plotted against hold time relative to
the Fermi time tF at the cloud centre.

• As the temperature increases towards Tc, the 
superfluid fraction of pairs is reduced and the 
amplitude of the oscillation decays.
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Measuring the Pairing Gap

§ The oscillation frequency, normalized to the Fermi
Energy, EF, stays relatively constant as the temperature is
increased.

§ Beyond T > 0.15TF the oscillations fall below our sensitivity.

[1] R. Haussmann et al., PRA 75, 023610 (2007)

Theory [1]

[1]
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Measuring the Pairing Gap

§ The oscillation frequency, normalized to the Fermi
Energy, EF, stays relatively constant as the temperature is
increased.

§ Beyond T > 0.15TF the oscillations fall below our sensitivity.

§ The expected decay rate in the far BCS and BEC region
should be 0.5 and 1.5, respectively, as indicated buy the
dashed and dot dash lines.

§ The observed decay rate lies approximately midway
between the BCS and BEC limits and looks stable as the
temperature is increased.

[1] R. Haussmann et al., PRA 75, 023610 (2007)

Theory [1]

[1]
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Interactions

§ The pairing gap change as a function of the interaction
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Interactions

§ Damping change as a function of the interaction

Tokimoto et al, JPSJ 88, 023601 (2019)

V. Guarie, PRL 103, 075301 (2009).
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Interactions

§ Damping change as a function of the interaction

Tokimoto et al, JPSJ 88, 023601 (2019)

V. Guarie, PRL 103, 075301 (2009).

⁄𝜔 2𝜋 = 5.2 ± 0.2 kHz

⁄𝜔 2𝜋 = 7.3 ± 0.1 kHz

⁄𝜔 2𝜋 = 8.1 ± 0.2 kHz
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Summary

§ Pairing gap as a function 
of temperature

Thanks for listening

⁄𝜔 2𝜋 = 5.2 ± 0.2 kHz

⁄𝜔 2𝜋 = 7.3 ± 0.1 kHz

⁄𝜔 2𝜋 = 8.1 ± 0.2 kHz

§ Pairing gap as a function 
of interactions

§ Damping changes as a 
function of interactions


