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Motivation and Background

® Mechanisms of relaxation of isolated quantum systems (integrable, non-integrable, weakly integrable)

Would a harmonically trapped, pure 1D Bose gas (no transverse excitations) thermalize after a quench?
<> A uniform 1D Bose gas is integrable (Lieb-Liniger model) and therefore it shouldn’t thermalise

<> Harmonic confinement breaks the integrability, but only weakly. Would it thermalize now? If yes, on
what time scale?

< Experiments are quasi-1D (not deep in 1D) ) transverse excitations also break the integrability and
the system thermalizes — presumably faster than a pure 1D would. Can the difference be observed?

® Revisit and scrutinize characterization of breathing-mode oscillations of a harmonically trapped 1D Bose gas in
the weakly interacting quasi-condensate regime

Observed beating of two distinct frequencies (unlike all previous studies, which report a single frequency,

In a partially Bose condensed 3D gas, such beating would be common; the two frequencies would be
associated with the breathing of the condensate and thermal components

However, a phase fluctuating 1D quasi-condensate is not a true condensate (occupatlon of the
ominate all others), so why do we still see two




T=0 weakly interacting, TF regime

Previous work /’ P

e All predicted a single oscillation frequency crossing over from wg ~ v/3w to 2w, depending on the
temperature and interactions strength

® Frequency of low-energy excitations is a ‘fingerprint’ of collective effects in interacting many-body systems
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1D quasicondensate and c-field simulations

® Lieb-Liniger model in a harmonic trap ____y interaction strength
. h? .. 0% . A NP
fe-t (a9t 2§ + /da:V(x,t)\IfT\Il +2 /dx VARARAY,
2m 0x? 2

® Finite-temperature c-field method (SPGPE - Stochastic Projected Gross-Pitaevskii equation):

Projector for c-field region / Growth term

‘Preparation’ of the initial Ae(x,t) = P(C){—lﬁéc)\llc(a:,t) dt + E(M B ESC))\IIC(x,t) dt + de(x,t)}

thermal ensemble: h \
. (©) h o 2
Mean-field GPE operator EO = —%@ + V(a}, t) + g|\I/C(.’13, t)| Noise term

(for subsequent evolution) eker ] (seeding of thermal
(AWE (2, t)dWp(a',t) = hB 6(x — a')dt fluctuations)

[Castin et al., J. Mod. Opt. 47, 2671 (2000); Blakie et al., Adv. Phys. 57, 363 (2008)]

® Trap quench protocol for exciting the breathing mode oscillations:

tmwgz?, fort <0,
Lmw?z?, fort > 0.




c-field simulation results

® Breathing mode oscillations of the density profile in the quasi-condensate regime:
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RMS width of the density profile
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® Fit with a superposition of two damped cosines (

Azrms(t) =A[VEK cos(wpit + ¢1)e ™ + V1 — K cos(wpat + ¢2)e 2] + C,

relative weights

0 breathing modes with frequencies and




Frequencies of the two breathing modes
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‘Bulk” and ‘tail’ components

['73/27—: 0.4; N =1110; w/wo =0.8]
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Beating in the bulk and tail components

Density In the trap centre (bulk) Density In the tails
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® The lower frequency breathing mode wpg1 is associated with the bulk

® The higher frequency breathing mode wpg2 is associated with the tails




Relative weight and condensate fraction

Relative power K of the wp1 component

Condensate fraction (Penrose-Onsager)
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® Nyo/N < K, therefore, the ‘bulk’ component (oscillating atwp; ) is not just the condensate mode, but many
low-energy, highly occupied modes » g

ommon [see, .e.g, PRA 94, 043640 (2016)]; the t



Crossover phase diagram of asymptotic regimes
in the weakly interacting uniform 1D Bose gas

® Dimensionless parameters for a uniform system:

. _ _myg v < 1 — weakly interacting (7 = 0 — ideal Bose gas)
interaction strength: 7 = h2p v > 1 — strongly interacting (v — oo — Tonks-Girardeau gas)
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‘Bulk’ and 'tails’

® ‘Bulk’ of the gas is locally in Regime Il. Bogoliubov (thermal) —
higly degenerate modes, with suppressed density fluctuations
(dominated by thermal fluctuations), but fluctuating phase

[Regime I. Bolgoliubov (quantum) — highly degenerate,
dominated by quantum, rather than thermal, fluctuations]

® “Tails’ are locally in Regime lll. Degenerate nearly ideal Bose
gas, but with both density and phase fluctuations present
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Damping rates
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chanism? — theory of Landau damping is not straightforward




Conclusions and outlook [arXiv:2207.00209]

Observe beating of two breathing modes in a harmonically trapped 1D quasi-condensate at nonzero
temperature, using c-field simulations

The frequencies of the breathing modes are intermediate between v3w and 2w

wB1 ~ V3w component dominates at lower temperature; associated with the bulk of the quasi-condensate
wp2 =~ 2w component dominates at higher temperatures; associated with the tails of the quasi-condensate
The two breathing modes have two distinct damping rates

The results:

— Call for a two-fluid model of a weakly interacting 1D Bose gas, despite the absence of true long-range
order or superfluidity at nonzero temperature in 1D

— Call for revisiting the theory of Landau damping in 1D and comparing its predictions with the c-field
results [See, e.g.: A. Micheli and S. Robertson, arXiv:2205.15826 (2022)]
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GHD simulations show beating too!
(GHD=Generalised Hydrodynamics; see B. Doyon, SciPost Phys. Lect. Notes 18 (2020) for a review)
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Phase coherence length
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Cutoff dependency of SPGPE
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Cutoff mode occupancy
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