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Motivation and Background
� Mechanisms of relaxation of isolated quantum systems (integrable, non-integrable, weakly integrable)

- Would a harmonically trapped, pure 1D Bose gas (no transverse excitations) thermalize after a quench?

² A uniform 1D Bose gas is integrable (Lieb-Liniger model) and therefore it shouldn’t thermalise

² Harmonic confinement breaks the integrability, but only weakly. Would it thermalize now? If yes, on 
what time scale? 

² Experiments are quasi-1D (not deep in 1D)         transverse excitations also break the integrability and         
the system thermalizes – presumably faster than a pure 1D would. Can the difference be observed?

� Revisit and scrutinize characterization of breathing-mode oscillations of a harmonically trapped 1D Bose gas in 
the weakly interacting quasi-condensate regime

- Observed beating of two distinct frequencies (unlike all previous studies, which report a single frequency,

- In a partially Bose condensed 3D gas, such beating would be common; the two frequencies would be 
associated with the breathing of the condensate and thermal components

- However, a phase fluctuating 1D quasi-condensate is not a true condensate (occupation of the lowest energy 
mode does not dominate all others), so why do we still see two frequencies like in 3D?
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Previous work
� All predicted a single oscillation frequency crossing over  from                                     , depending on the 

temperature and interactions strength

� Frequency of low-energy excitations is a `fingerprint’ of collective effects in interacting many-body systems

where Hint ¼ g1D
P

j<kδðzj − zkÞ is the interaction part of
the Hamiltonian. The final equality comes from explicitly
working out hC2iT and hC4iT , and taking the limit of an
infinitesimal quench amplitude α → 1, where the sinusoi-
dal approximation is valid [33].
It is remarkable that both approaches (HDE and the exact

short-time expansion) give the same results for the breath-
ing frequencies through the crossover. This indicates that
the finite-temperature mass transport is indeed isentropic.
Moreover, Eq. (2) extends the regime of validity of the
existing sum-rule approaches, which erroneously predicts
ωBz ¼

ffiffiffi
2

p
ωD in the IBG, whereas the true asymptotic limit

is ωBz ¼ 2ωD.
Our theories provide a qualitatively good agreement with

the experimental data, despite an overall overestimation of
the breathing frequency. This quantitative departure most
likely indicates that the atomic ensemble is not at thermal
equilibrium at the end of the preparation (evaporation).
Although the in situ profiles calibrated with the YY EOS
generally yield about 100 nK, the atom-number fluctuation
indicates approximately 35 to 45 nK at the center of the
cloud. We thus include in Fig. 3(a) our prediction at
t ¼ 400 (dash-dotted line). We believe that such a lack
of equilibrium is a direct consequence of evaporating into

the integrable (1D) regime. Further investigation in this
direction is underway.
Disappearance of the self-reflection mechanism.—To

address the behavior of the breathing mode in momentum
space, we investigate the time evolution of wp, extracted
from a Lorentzian fit of nðpÞ. Since wp shows a periodic
behavior at the frequency ωBz, it can be expanded in a
discrete Fourier spectrum. The relative weight of the
Fourier components varies through the crossover, and
we obtain quantitative information by fitting wp with a
function

y¼Ae−τ=τ1 þBe−τ=τ2 ½
ffiffiffiffi
K

p
cosðωBzτÞ−

ffiffiffiffiffiffiffiffiffiffiffi
1−K

p
cosð2ωBzτÞ&;

ð3Þ

shown in Fig. 2 (bottom, solid line), with A fixed at the
average width during the initial cycle and the phase
corresponds to a minimal in situ width at the start of the
oscillations. The relative power of the first harmonic K
(squares) and second harmonic 1 − K (diamonds) is shown
in Fig. 3(b) as a function of γ0. In the QBEC, the second
harmonic dominates, as predicted by the scaling solution,
and signals the self-reflection mechanism. In the IBG, the
first harmonic dominates, as expected for a noninteracting
gas where the self-reflection is absent. Both weights vary
gradually through the crossover, indicating a smooth
disappearance of the self-reflection mechanism. This can
be seen as the effect the breathing mode has on the
thermally excited Bogoliubov modes of high energy;
e.g., their frequency and wave function would be modu-
lated in time, such that wp is larger at minimal hz2i than that
at maximal hz2i, see Fig. 2 (data B). The periodicity at 2ωBz
is then broken and the first harmonic at ωBz emerges.
Figure 3 shows that the first harmonic starts to gain weight
at a value of γ0 significantly smaller than that where the
frequency shift takes place in real space.
The breathing mode observed has a lifetime estimated to

be on the order of seconds. This is in stark contrast to
situations in 3D where damping of the collective modes
occurs, mainly via the Landau damping mechanism [34,35].
The long lifetime of the breathingmode in 1Dmay be related
to the integrability of the underlying LL model.
Conclusions.—In this Letter we have probed the breath-

ing mode in real and momentum space through the QBEC
to IBG crossover. The shift of the real-space frequency
between the asymptotic values

ffiffiffi
3

p
ωD and 2ωD is demon-

strated. Our theory models that assume thermal equilibrium
before the quench do not agree with the measurement
quantitatively, indicating the possibility of a non-Gibbs
initial state produced by evaporation. We report the first
observation of a momentum-space frequency doubling
in QBEC, corresponding to an interaction-induced self-
reflection mechanism that is expected of a Tonks gas.
We experimentally map out the disappearance of the
self-reflection through the crossover, for which no

FIG. 3 (color online). Breathing mode through the crossover.
(a) Breathing frequency in units of dipole frequency, as a function
of γ0. Our theory evaluated at t ¼ 1100 (dashed line) and t ¼ 400
(dash-dotted line) are shown. (b) Relative power of the first
(square) and second (diamond) harmonics of wp. Data labels
(A–C) correspond to those in Fig. 2. The error bars account for
fitting error only. The dotted lines are the asymptotic limits.
The shaded region shows the crossover criteria γco ¼ t−2=3 (the
dashed line in the inset), at t≃ 1100 given by the in situ profile
with 20% uncertainly. Inset: the phase diagram of the LL model
[29], where all lines represent smooth crossovers. The horizontal
line segment shows the region explored by the data [20].
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FIG. 5. (Color online) The ratio of the squared breathing-mode
frequency ω2

m/ω2
ho at N = 25 in the weakly interacting regime.

We have shown the results at T = 0 predicted by the generalized
Bogoliubov theory (black squares) and by the HFBP theory (red
dashed line) and the results at T = 0.8T 0

c given by the HFBP theory
(blue dotted line).

Bogoliubov theory (squares, indicated as gB in the figure)
and the HFBP theory (dashed line). There is good agreement,
as anticipated.

3. Comparisons with the experiment and previous theory

We now address the breathing-mode frequency in all
interaction regimes, emphasizing its dependence on finite par-
ticle number and nonzero temperature. We vary the effective
interaction parameter γeff from 2.2 × 10−3 to 2.9 × 102 and
thus cover all the regimes from the noninteracting limit to the
mean-field regime to the Tonks-Girardeau limit. The results
are presented as a function of the interaction parameter shown
in the linear (Fig. 6) and logarithmic scales (Fig. 7) and
are compared with the experimental data [3] and a previous
theoretical prediction [11].

In general, in Figs. 6 and 7 the squared frequency ratio
ω2

m/ω2
ho of the breathing mode decreases from 4 in the

FIG. 6. (Color online) The ratio of the squared breathing-mode
frequency ω2

m/ω2
ho as a function of the effective interaction parameter

γeff . γeff covers all interaction regimes and varies from 2.2 × 10−3

to 2.9 × 102. We consider three particle numbers: N = 8 (black
solid line), N = 17 (red dashed line), and N = 25 (blue dotted line).
We have compared our result with a previous theoretical prediction
obtained by using a time-dependent modified nonlinear Schrödinger
equation (m-NLSE; yellow dot-dashed line) [11] and the experimental
data (green squares with error bars) [3].

FIG. 7. (Color online) The ratio of the squared breathing-mode
frequency ω2

m/ω2
ho as a function of log10 γeff . The plot is the same as

Fig. 6 but is shown here as a function of the interaction parameter
in a logarithmic scale in order to emphasize the particle number
dependence in the noninteracting limit.

noninteracting limit to 3 in the weakly interacting mean-field
regime and then increases back to 4 in the strongly interacting
Tonks-Girardeau regime.

In greater detail, the previous theoretical work (see the
results indicated as m-NLSE in Figs. 6 and 7) considered
a particle number N = 25 [11]. Here, we have performed
numerical calculations with the same number of particles.
We have also considered two other sets of particle numbers,
N = 8 and N = 17, since in the experiment the range of the
particle number N is 8–25 [3]. For the case with particle
number N = 25, our results agree very well with the m-NLSE
predictions. The good agreement is easy to understand, as
both theories start from the same generalized Gross-Pitaevskii
equation. The different numerical treatments, i.e., the time-
dependent simulations in Ref. [11] and our solution of the
generalized Bogoliubov equations, lead to only a negligible
difference. By further comparing both theoretical predictions
at N = 25 with the experimental data, we find good agreement
in the mean-field and Tonks-Girardeau regimes, where the
breathing-mode frequency essentially does not depend on
the particle number. However, near the noninteracting limit,
the discrepancy between experiment and theory becomes
evident: the experimental data lie systematically below the
theory curves. In this limit, the particle-number dependence of
the breathing-mode frequency is significant.

The particle-number dependence is seen particularly clearly
in Fig. 7. The decreasing of the particle number N from
25 to 8 increases the ratio of the squared breathing-mode
frequency. Thus, taking into account the possibility of a smaller
particle number (i.e., N < 25) in the real experiment will
even enlarge the discrepancy between experiment and theory.
On the other hand, this discrepancy cannot be resolved as a
finite-temperature effect, as in the previous section we already
found that a nonzero temperature generally leads to a larger
mode frequency.

C. Higher-order collective modes

One of the advantages of our generalized Bogoliubov theory
is that we can directly obtain higher-order collective-mode
frequencies from numerical calculations. In Fig. 8, we present

063631-7

COLLECTIVE MODES OF A ONE-DIMENSIONAL TRAPPED . . . PHYSICAL REVIEW A 90, 013622 (2014)

FIG. 3. (Color online) Contour plot of the square of the breathing
mode frequency (ωB/ωz)2 in different regimes. With increasing
temperature or interaction strength, the breathing mode frequency
increases from

√
3ωz to 2ωz.

we plot respectively the coupling constant and temperature
dependence of the breathing mode frequency in greater
detail. Here, in both figures we show (ωB/ωz)2 rather than
ωB/ωz, following the sum-rule convention used in the previous
theoretical studies [25].

FIG. 4. (Color online) The square of the breathing mode fre-
quency (ωB/ωz)2 as a function of interaction strength N (a1D/aho)2

(a) or as a function of temperature T/TF (b). For a weakly interacting
Bose gas at N (a1D/aho)2 = 100, the breathing mode frequency
obtained by the sum-rule approach is also shown by a thin line
in (b).

For the coupling constant dependence [see for example
Fig. 4(a)], the mode frequency at zero temperature decreases
monotonically from the asymptotic strongly interacting value
2ωz at N (a1D/aho)2 " 1 to the weakly interacting value√

3ωz at N (a1D/aho)2 # 1, in agreement with the analytic
analysis mentioned earlier. At finite temperatures, however,
this monotonic decrease no longer persists. At sufficiently
weak coupling, we find that the mode frequency will finally
turn up due to a nonzero temperature, however small it is. As
a result, a broad minimum appears in the mode frequency,
with its position shifting to the strong-coupling regime when
temperature increases.

For the temperature dependence as shown in Fig. 4(b), we
find instead that the mode frequency always increases with
increasing temperature at arbitrary interaction strength. In the
strongly interacting regime, the trend of increase becomes
very weak, as the zero-temperature mode frequency itself
shifts to the same value of 2ωz as in the high-temperature
limit. We note that, at finite temperatures, the sum-rule
result Eq. (21) still works excellently well. At the coupling
constant N (a1D/aho)2 = 100, the sum-rule result and the full
variational prediction for (ωB/ωz)2 differ relatively by 1%
at most, indicating that the breathing mode is indeed well
approximated by the displacement field u(z) ∝ z.

C. Higher mode frequency

We now consider the mode frequency of higher collective
modes. Although these modes are technically more difficult
to excite than the breathing mode, their excitation in quasi-1D
configuration has been recently demonstrated for a unitary
Fermi gas [38]. In Fig. 5, we report the contour plot of the third
and fourth compressional modes. The temperature dependence
of the frequency of higher modes is presented in Fig. 6.

The qualitative behavior of the frequency of higher col-
lective modes is very similar to what we have observed in
the breathing mode. The most remarkable difference is that
the mode frequency at zero temperature may be significantly
larger than the frequency at high temperatures. As a result,
the mode frequency no longer increases monotonically with
increasing temperature. Nonetheless, it is clear that all the
mode frequencies could have distinct behavior in different
quantum phases and hence could provide a useful way
to characterize the phase diagram, in addition to the pair
correlation characterization.

D. Comparison with the experiment

Experimentally, the temperature dependence of the breath-
ing mode frequency of a 1D interacting Bose gas at a particular
interaction strength was measured by the Esslinger team over
ten years ago. The temperature of the atomic cloud is tuned
by varying the hold time prior to excitations of the breathing
mode and is indirectly characterized by measuring the axial
width of the cloud after 15 ms of time-of-flight expansion [3].
Therefore, it is not possible to directly compare our theoretical
result for the breathing mode frequency with the experimental
data.

In Fig. 7, we compare the theory and experiment by
assuming that the normalized cloud size, given by the ratio
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[15–20], but also the study of nonequilibrium behavior.
Of special importance is the measurement of the momen-
tum distribution, now feasible via Bragg spectroscopy [21]
or focusing technique [20].
Our experiment prepares a single tube of 87Rb gas using

an atom-chip setup [17]. The final samples typically
constitute 800 to 8000 atoms for this experiment. The
in situ density profile [15] indicates a temperature around
100 nK, corresponding to a central chemical potential
μ0 ∈ ½0.04; 0.5" × kBT [22]. Since the transverse con-
finement ω⊥ ¼ 2π × 2 kHz, we have μ0 ≪ kBT ≃ ℏω⊥,
achieving a nearly 1D scenario. The breathing mode is
excited by quenching the axial confinement ωz from ω0

to ωD, see Fig. 1(a) for a sketch. We keep the quench
strength α≡ ω0=ωD ≃ 1.3 constant. The resulting cloud
evolves for a duration τ before an absorption image is
taken, either in situ to yield the density profile ρðz; τÞ,
or at focus to yield the momentum distribution nðp; τÞ.
By varying τ, we map out the evolution in real and
momentum space.
Quasicondensate regime.—We start by considering the

QBEC regime: Figs. 1(b) and 1(c) show ρðz; τÞ and nðp; τÞ
for a data set that lies in this regime (data A). The time
evolution of these two quantities reveals a remarkable
frequency mismatch. In order to elucidate its origin, we use
the hydrodynamic equations (HDEs) [23],

∂τρþ ∂zðρvÞ ¼ 0;

∂τvþ v∂zv ¼ −∂z

!
1

2
ω2
Dz

2

"
−

1

mρ
∂zP; ð1Þ

where ρ ¼ ρðz; τÞ and v ¼ vðz; τÞ are the density and
velocity fields, and P is the pressure. For a QBEC,
P ¼ g1Dρ2=2, so that the scaling solution ρðz; τÞ ¼
ð1=bðτÞÞρ0ðz=bðτÞÞ [24] is valid provided ρ0 is the
steady-state inverted parabola, and the scaling factor b
obeys b̈þ ωzðτÞ2b ¼ ω2

0=b
2. Such ρðz; τÞ is periodic in

time with a frequency ωBz ≃
ffiffiffi
3

p
ωD. Neglecting thermal

fluctuations, it follows that the momentum distribution
satisfies [24] nðp; τÞ ∝ ρ0ðbp= _ðbmÞÞ, which is periodic in
time with a frequency ωBp ¼ 2ωBz. Minimal momentum
width occurs when the real-space density is the broadest
and the most narrow. The latter, which does not occur for a
noninteracting system, corresponds to a self-reflection
of the cloud due to repulsive interactions. In higher
dimensions, the scaling solutions also predict a frequency
doubling of the breathing modes [25]. What may have
prevented its observation is perhaps the fact that early
experiments using time-of-flight (TOF) techniques do not
measure the true momentum distribution due to the con-
tribution of interaction energy.
It is worth mentioning that such a momentum-space

frequency doubling in the oscillatory behavior of wp, the
half width at half maximum (HWHM) of the momentum
distribution, is expected to occur for a Tonks gas
(g1D → þ∞) [26]. For large α, the momentum distribution
oscillates between being Fermi-like and Bose-like. It is
Bose-like when the cloud is the broadest and the most
narrow, but becomes dominated by the large Fermi-like
hydrodynamic component during expansion and compres-
sion [13]. This marks the difference between the breathing
behavior of a strongly interacting 1D Bose gas and that of a
noninteracting gas: the former displays alternating bosonic
and fermionic nature during breathing due to the presence
of interaction, even though the breathing frequency in
real space is ωBz ¼ 2ωD for both cases. Similar collective
oscillations of strongly interacting 1D Bose gases have
been studied in two experiments [4,10] to our knowledge,
neither reporting any frequency doubling. In the former [4],
a different excitation scheme is employed, potentially
rendering the frequency doubling inaccessible. In the
latter [10], the finite TOF may have prevented the direct
measurement of the momentum distribution.
In our experiment the momentum-space frequency dou-

bling is clearly seen in Figs. 1(b) and 1(c).Moreover, the data
are in good agreement with the zero-temperature theory
above, whose predicted real- and momentum-space density
evolutions for a system initially at equilibrium in the trap of
frequency ω0 are shown in Figs. 1(d) and 1(e), with nðp; τÞ
broadened to account for finite resolution [27]. For a
more quantitative comparison, we show two frames of the
instantaneous densities. At τ ¼ 1 ms [minimal in situwidth,

FIG. 1 (color online). Quench sequence and subsequent density
evolution in position and momentum space for a QBEC (data A).
(a) Longitudinal trapping frequency ωz as a function of time τ.
(b) ρðz; τÞ, (c) nðp; τÞ, experimental data (in atoms/pixel). (d),(e),
corresponding plots from ab initio scaling calculation. (f) and (g)
show instantaneous ρðzÞ, nðpÞ at τ ¼ 1 and 21 ms. Experimental
data (dots) are compared with the scaling solutions (solid lines).
QMC calculation of nðp; τÞ (dashed line) is shown in (f). zðpÞ is in
units of pixels ΔzðΔpÞ, with Δz ¼ 2.7 μm, and Δp ¼ 0.14ℏ=μm.
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Fig. 1(f)], the scaling solution predicts a vanishing momen-
tum width, but thermal fluctuations dominate such that the
finite-temperature momentum distribution computed using
quantum Monte Carlo (QMC) methods [20] (dashed lines)
accounts for the data better than the sole effect of resolution
[28]. However, thermal fluctuations are small corrections
at τ ¼ 21 ms [maximal momentum width, Fig. 1(g)], and
both ρðzÞ and nðpÞ are in excellent agreement with the
inverted parabolas of the scaling solution. Such homothe-
ticity is due to the fact that the momentum distribution is
dominated by the hydrodynamic velocity field, which is
linear in position. The same phenomenon is at the origin of
the dynamic fermionization of a Tonks gas [13].
Ideal Bose gas regime.—For an IBG, a single-particle

description suffices and breathing amounts to a rotation
of the phase-space density, so that the widths in real and
momentum space oscillate out of phase at the same
frequency ωB ¼ 2ωD. Figure 2 shows a data set close to
this regime (data C), where the in situ mean-square width
hz2i (momentum HWHM wp) is obtained from Gaussian
(Lorentzian) fit. The antiphase is apparent from the plots.
Fitting both time evolution with damped sinusoids, we
measure identical breathing frequency, ωB=ωD ¼ 1.84$
0.04, where ωD is determined by monitoring the center-of-
mass (dipole) oscillations.
Crossover in real space.—A central point to be under-

stood is how the breathing frequency varies through the
QBEC to IBG crossover. To address this question, we vary
the total atom number in order to explore different regimes.
The inset of Fig. 3 shows the region spanned by the data
in the (γ, t) phase diagram of the LL model [29], where
γ ¼ mg1D=ðℏ2ρÞ is the (local) interaction parameter, and
t ¼ 2ℏ2kBT=ðmg21DÞ is the reduced temperature. Each
sample is characterized by γ0, evaluated at the peak density.
We extract hz2i from fitting ρðzÞ with either an inverted
parabola for γ0 < 0.004 [30] or a Gaussian otherwise.
We obtain the real-space breathing frequency ωBz by fitting
hz2iðτÞ with a damped sinusoid. The measured ωBz=ωD as

a function of γ0, shown in Fig. 3(a), displays a smooth
crossover between the asymptotic theoretical limits

ffiffiffi
3

p
and

2 [11]. Such a frequency shift was first observed in Ref. [9],
where the authors probed the breathing behavior of an
ensemble of 1D gases in real space. In addition to the
issue of thermalization mentioned in Ref. [9], the intrinsic
ensemble averaging renders it problematic to characterize
the system with a single value of temperature T or
interaction parameter γ. In contrast, our current experiment
with a single 1D system allows for a more quantitative
study of the problem at hand.
In order to provide a theoretical treatment of the cross-

over, we devise two complementary approaches. On one
hand, we model the crossover using the HDE Eq. (1). Since
long-wavelength density waves in a fluid are adiabatic [31],
we use the isentropic pressure curves derived numerically
from the YY equation of state (EOS) [32]. The breathing
mode frequency measured experimentally does not depend
on the oscillation amplitude for the explored parameter
range. We thus linearize the HDE for small displacement
and ωBz is obtained by solving an eigenvalue problem.
Results evaluated at t ¼ 1100 are shown as a dashed line in
Fig. 3(a). On the other hand, we provide a microscopic
treatment of the breathing frequency that accounts for the
effect of temperature. Assuming the system at τ ¼ 0 is at
thermal equilibrium with a Hamiltonian H ¼ HLL þHpot,
Hpot ¼ mω2

0

P
jz

2
j=2, the expansion of the Heisenberg

equation of motion after a quench ΔH ¼ mðω2
D −

ω2
0Þ
P

jz
2
j=2 gives hΔHiðτÞ ¼ hΔHiT − ðτ2=2ÞhC2iTþ

ðτ4=4!ÞhC4iT þ & & &, where C2 and C4 are the second
and fourth order nested commutators with Hf¼HþΔH,
and the thermal average h& & &iT is taken over the thermal
state of H. Suppose the time evolution hΔHiðτÞ ∝ hz2iðτÞ
is purely sinusoidal at the frequency ωBz, we have

ω2
Bz

ω2
D
¼ hC4iT

hC2iT
¼ 4 −

1

2

hHintiT
hHpotiT

; ð2Þ

FIG. 2 (color online). Time evolution of the in situ mean-square width hz2i (top) and the momentum HWHM wp (bottom) for 3 data
sets. The solid lines show the fit: a damped sinusoid in real space (top), and a two-harmonic model according to Eq. (3) in momentum
space (bottom). Statistical error of the widths are shown for the first 100 ms. Data A, B, andC differ in thermodynamic regime. See Fig. 3
and text for details.
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1D quasicondensate and c-field simulations

� Lieb-Liniger model in a harmonic trap

� Finite-temperature c-field method (SPGPE - Stochastic Projected Gross-Pitaevskii equation):

[Castin et al., J. Mod. Opt. 47, 2671 (2000); Blakie et al., Adv. Phys. 57, 363 (2008)]

� Trap quench protocol for exciting the breathing mode oscillations:

interaction strength

Growth term

Noise term 
(seeding of thermal 
fluctuations)

Mean-field GPE operator
(for subsequent evolution)

Projector for c-field region

‘Preparation’ of the initial 
thermal ensemble:
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c-field simulation results

� Breathing mode oscillations of the density profile in the quasi-condensate regime:

� Extract the rms width:

time

po
sit

io
n

• Dimensionless interactions strength in the trap centre:

• Dimensionless initial temperature:

• c-field equations in dimensionless form depend on the 
combination:
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RMS width of the density profile

� Fit with a superposition of two damped cosines (               ):

� Beating of two breathing modes with frequencies          and          , each with their own damping rates        &
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Frequencies of the two breathing modes
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‘Bulk’ and ‘tail’ components

- frequency of the bulk component

- frequency of the tail component

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0.4 0.5 0.6 0.7 0.8 0.9 1

1.75

1.8

1.85

1.9

1.95

2

temperature
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Beating in the bulk and tail components

� The lower frequency breathing mode           is associated with the bulk

� The higher frequency breathing mode           is associated with the tails

0 20 40 60 80 100

55

60

65

70

75

0 20 40 60 80 100

2

2.5

3

3.5

4

Density In the trap centre (bulk) Density In the tails

Relative weight of         Relative weight of 

Fit:
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Relative weight and condensate fraction

� , therefore, the ‘bulk’ component (oscillating at         ) is not just the condensate mode, but many 
low-energy, highly occupied modes 

� In 3D the beating is common [see, .e.g, PRA 94, 043640 (2016)]; the two frequencies are associated with the 
condensate and thermal atoms; but in 1D, we have a phase fluctuating quasi-condensate (not a true BEC)

0.4 0.5 0.6 0.7 0.8 0.9 1
0
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Crossover phase diagram of asymptotic regimes 
in the weakly interacting uniform 1D Bose gas 

� Dimensionless parameters for a uniform system: 

interaction strength: 

temperature: c-field method:

single dimensionless parameter 
(      – in the trap center), plus N

Scan A

B

A
BII

III

Density of a non-uniform
(trapped) system, in the local 
density approximation, can 
explore different regimes in 
this phase diagram
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`Bulk’ and `tails’

� ‘Bulk’ of the gas is locally in Regime II. Bogoliubov (thermal) –
higly degenerate modes, with suppressed density fluctuations 
(dominated by thermal fluctuations), but fluctuating phase

[Regime I. Bolgoliubov (quantum) – highly degenerate,   
dominated by quantum, rather than thermal, fluctuations]

� `Tails’ are locally in Regime III. Degenerate nearly ideal Bose 
gas, but with both density and phase fluctuations present

III

II

A

B

A
B
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Damping rates

� For typical experimental parameters, 
converts to                      or a damping time 
constant 

� is smaller           tails thermalise slower
(                                 )

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02
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0.04

0.05

0.06

temperatureatom number

� Damping mechanism? – theory of Landau damping is not straightforward to adopt in 1D (and disagreed with data)
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Conclusions and outlook  [arXiv:2207.00209]

� Observe beating of two breathing modes in a harmonically trapped 1D quasi-condensate at nonzero 
temperature, using c-field simulations

� The frequencies of the breathing modes are intermediate between            and  

� component dominates at lower temperature; associated with the bulk of the quasi-condensate 

� component dominates at higher temperatures; associated with the tails of the quasi-condensate

� The two breathing modes have two distinct damping rates

� The results: 

- Call for a two-fluid model of a weakly interacting 1D Bose gas, despite the absence of true long-range 
order or superfluidity at nonzero temperature in 1D

- Call for revisiting the theory of Landau damping in 1D and comparing its predictions with the c-field 
results [See, e.g.: A. Micheli and S. Robertson, arXiv:2205.15826 (2022)]
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GHD simulations show beating too!
(GHD=Generalised Hydrodynamics; see B. Doyon, SciPost Phys. Lect. Notes 18 (2020) for a review)

Credit to Raymon Watson
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Phase coherence length

� from
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Cutoff dependency of SPGPE
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Cutoff mode occupancy
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