Molecular convergent close-coupling calculations for the ionisation of H₂ and its isotopologues

E. Jong^a, L.H. Scarlett^a, S. Odelia^a, M.C. Zammit^b, B.I. Schneider^c, I. Bray^a, D.V. Fursa^a

^aCurtin Institute for Computation and Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6102, Australia

^bTheoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

^cNational Institute of Standards and Technology, Gaithersburg, Maryland 20899-8422, USA

The molecular convergent close-coupling (MCCC) method was used to calculate cross sections for total ionisation of H₂ and its isotopologues, starting from vibrational levels in the $X \ ^{1}\Sigma_{g}^{+}$, $B \ ^{1}\Sigma_{u}^{+}$, $C \ ^{1}\Pi_{u}$, $EF \ ^{1}\Sigma_{g}^{+}$, $a \ ^{3}\Sigma_{g}^{+}$ and $c \ ^{3}\Pi_{u}$ electronic states. Electron collisions with H₂ and its isotopologues play an important role in governing the dynamics of various low-temperature plasmas relevant in fusion and astrophysical applications. We compare our calculations with those of Wünderlich [1] and find generally good agreement.

The cross sections for total ionisation of H₂ from the v = 0 vibrational level in the $X \, {}^{1}\Sigma_{g}^{+}$, $B \, {}^{1}\Sigma_{u}^{+}$, $C \, {}^{1}\Pi_{u}$, $EF \, {}^{1}\Sigma_{g}^{+}$, $a \, {}^{3}\Sigma_{g}^{+}$ and $c \, {}^{3}\Pi_{u}$ electronic states are shown in Figure 1 and are compared with calculations by Wünderlich [1] obtained using the semi-classical Gryzinski method. Generally, we find good agreement with Wünderlich [1] at high energies but not in the intermediate energy range, as expected. There are several experiments [2, 3] for ionisation of the ground state $X \, {}^{1}\Sigma_{g}^{+}(v = 0)$ where we find good agreement. However, there are no experimental data for excited states.

- [1] D. Wünderlich, At. Data Nucl. Data Tables140, 101424 (2021)
- [2] D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).
- [3] E. Krishnakumar and S. K. Srivastava, J. Phys. B: At., Mol. Opt. Phys. 27, L251 (1994).

Figure 1: Cross sections for electron-impact ionisation of various electronic states of H₂ in the v = 0 vibrational level. All panels include comparison with Wünderlich [1]. Measurements by Krishnakumar & Srivastava [3] and Rapp & Englander-Golden [2] are included for $X^{-1}\Sigma_g^+$.