A degenerate mixture of ³He^{*} and ⁴He^{*} with 3D single particle resolution

Kieran Thomas^a, C. Ou^a, A.A. Baiju^a, B.M. Henson^a, S.S. Hodgman^a, and A.G. Truscott^a

^aDepartment of Quantum Science and Technology, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia.

We present our experimental realisation of a degenerate mixture of ⁴He [bosonic] and ³He [fermionic], with ⁴He $T/T_c \sim 0.3$, and ³He $T/T_f \sim 0.1$, both in the excited metastable sate 2^3S_1 . In addition to characterising the thermodynamic properties of the mixture, we exploit the single-particle and 3D resolution capabilities of ³He and ⁴He, due to the large internal energy of the 2^3S_1 state, to investigate the possible correlations found in this system. This includes higher-order fermionic anti-bunching, and the correlations found in an *s*-wave scattering halo between a ⁴He Bose-Einstein condensate and ³He degenerate Fermi gas, which represents a non-trivial combination of fermionic anti-bunching and bosonic bunching. The possibility of measuring phase separation between the species is also discussed.