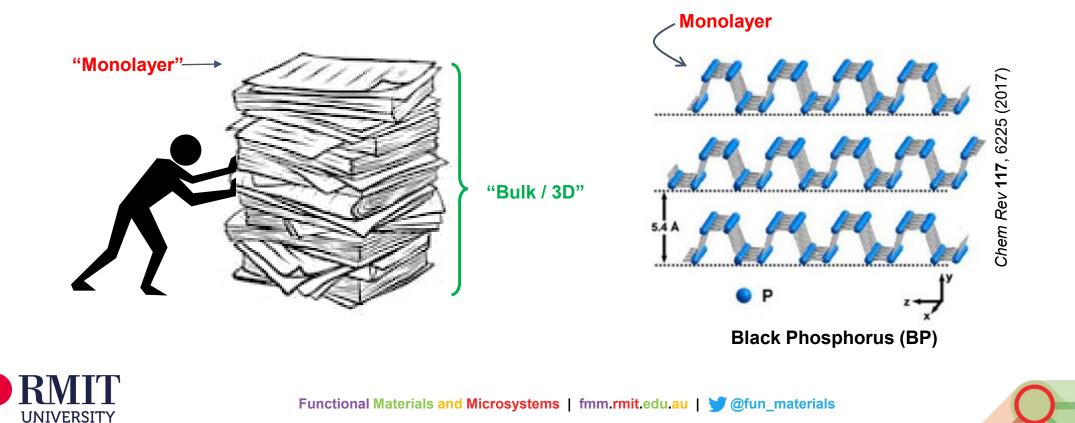
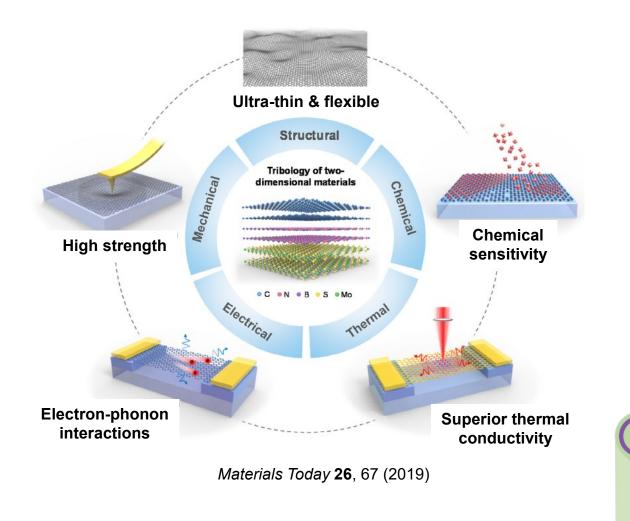

Enhanced photodetection with BP – organic hybrid

12th December 2022

Jamie (Mei Xian) Low



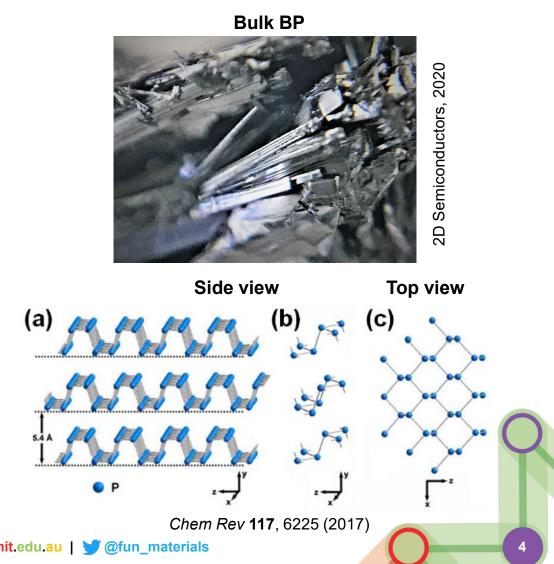
Functional Materials and Microsystems | fmm.rmit.edu.au | 🔰 @fun_materials


Two-dimensional (2D) Materials

- Layered materials, weak interlayer (van der Waals) forces
- Single layer of atoms / molecules

Two-dimensional (2D) Materials

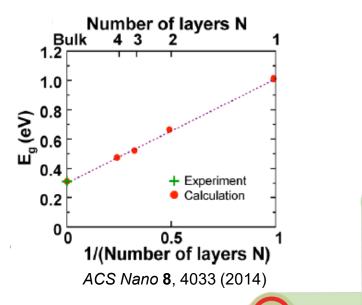
- Exceptional physical, chemical, electronic properties
- Increased carrier mobility due to quantum confinement
- Applications
 - Optoelectronics, gas sensors, piezoeletronics, biosensors etc



Black phosphorus (BP)

Thickness dependent direct band-gap

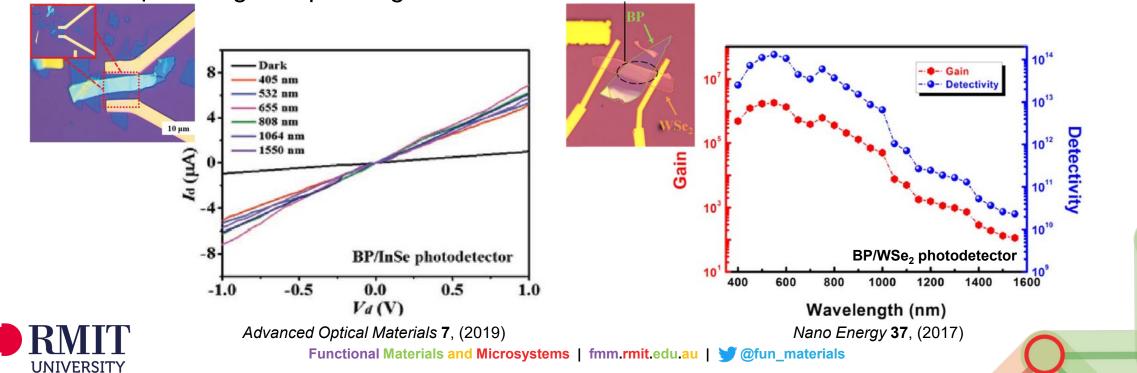
- 0.3 eV (bulk) \rightarrow 2.0 eV (monolayer)
- High carrier mobility (> 10³ cm² V⁻¹ s⁻¹)
- In-plane anisotropy
 - Electrical and optical
- Applications:
 - Optoelectronics, Humidity sensors
- Disadvantage → degrades at ambient conditions (passivation techniques available)



Functional Materials and Microsystems | fmm.rmit.edu.au | 😏 @fun_materials

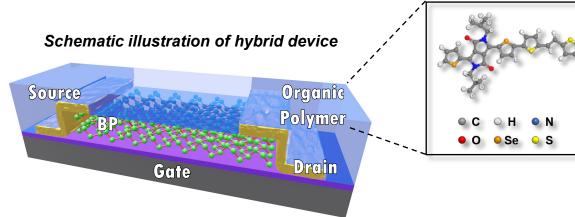
Multilayer BP Photodetectors

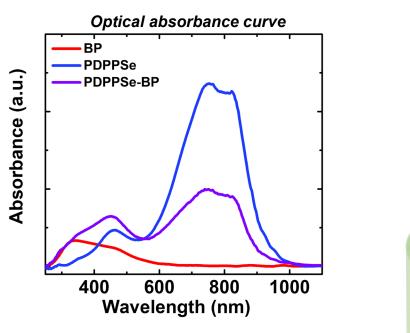
- UV visible or mid-IR photo absorption
 - 280 nm 600 nm (UV-Vis), ~3 μm (mid-IR)
- Requires gating (external electric field) to achieve broadband photodetection > 600 nm
 - High power consumption
 - Non-gated devices → responsivity ~ 2 5 mA W⁻¹ (visible: 532 nm – 640 nm)
- Thickness tuneable bandgap to manipulate optoelectronic properties
 - Difficulties in controlling thickness through mechanical and liquid exfoliation without introducing defects



Tuning BP Characteristics (Hybridization)

Achieving broadband (UV – IR) photodetection with hybridization

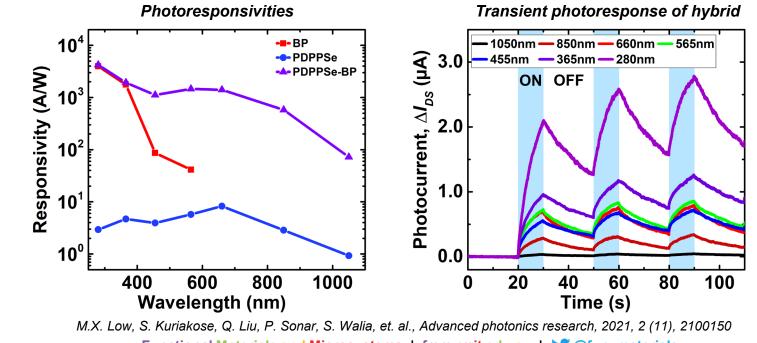

• Heterostructuring with other 2D materials


- Accurate positioning needed and not scalable
- Requires higher operating bias to overcome barrier

BP – Organic Hybrid

- DPP semiconducting polymer
 - High optical absorption in Visible-IR
 - Low band-gap
- Inorganic (BP) + organic (DPP) semiconductor hybrid
 - Simple scalable hybridization process
 - Combined optical absorbance of both materials
 - UV to near-IR

DPP: Diketopyrrolopyrole

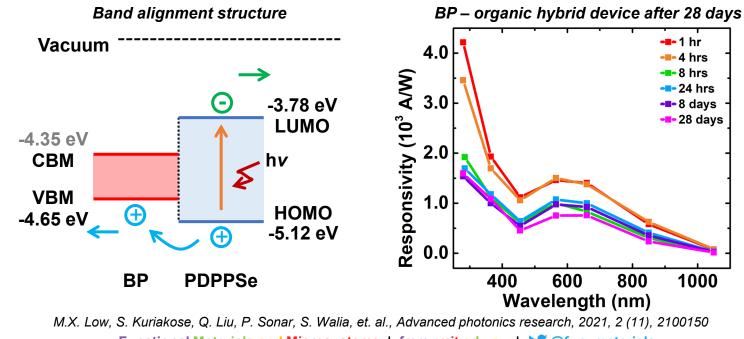

M.X. Low, S. Kuriakose, Q. Liu, P. Sonar, S. Walia, et. al., Advanced photonics research, 2021, 2 (11), 2100150

Functional Materials and Microsystems | fmm rmit.edu.au | 😏 @fun_materials

BP – Organic Hybrid

Substantial enhancement in photoresponsivity, especially in Vis – near IR

- No gating required (typically requires V_{G} of > 15 V in literature)
- Low operation voltage (V_{DS}) of 50 mV
- Responsivities up to 4×10^3 A W⁻¹ without external gating



Functional Materials and Microsystems | fmm.rmit.edu.au | 🔰 @fun materials

BP – Organic Hybrid

- Type-I band alignment
 - Allows photogenerated carriers in polymer to flow into high mobility BP
- Organic polymer also serves as passivation layer
 - Remains stable > 28 days in ambient (BP typically degrades within 7 days)

Functional Materials and Microsystems | fmm.rmit.edu.au | 🔰 @fun materials

BP – Organic Hybrid (Comparison)

Material	Substrate	Spectral Range (nm)	R (A/W)	λled (nm)	P _{LED} (mW/cm ²)	Testing Condition	VDS (V)	VG (V)	Ref
13 nm BP + PDPPSe	SiO ₂ /Si	280 - 1050	72.2 4.22×10^3	1050 280	3	Ambient	0.05	0	This work
7 nm BP + WSe ₂	SiO ₂ /Si	400 – 1550	1×10^3	637	1	Ambient	0.5	0	12
16 nm BP + InSe	SiO ₂ /Si	405 – 1550	53.7	655	50	Ambient	1.0	-20	11
8 nm BP	SiO ₂ /Si	400 - 940	0.0048	640	16	Vacuum	0.2	0	10
120 nm BP	SiO ₂ /Si	532 - 1550	0.0005 0.002	1550 532	$3.1 imes 10^{6}$	-	0	0	27
28 nm BP	SiO ₂ /Si	1550	1.55	1550	9270	Ambient (h-BN)	0.5	0	28
4.5 nm BP	SiO ₂ /Si	310 - 950	$\begin{array}{c} 1.82\\9\times10^4\end{array}$	950 310	2 - 31	Vacuum	0.1	-80	4
8 nm BP	SiO ₂ /Si	400 - 900	$\begin{array}{c}1\times10^{3}\\5.6\times10^{4}\end{array}$	900 633	0.5	Vacuum	-1.0	-15	9
7 nm BP	SiO ₂ /Si	532 - 940	0.003 0.028	940 532	0.26 - 3.03 × 10 ⁻³	Vacuum	0	7 – 12	29
30 nm BP	SiO ₂ /Si	570 – 1700	5	570	1	Ambient (Al ₂ O ₃)	0.05	-20	30
10 nm BP	PI/PET	830	53	830	16.5	Ambient (Al ₂ O ₃)	0.3	-4	31

M.X. Low, S. Kuriakose, Q. Liu, P. Sonar, S. Walia, et. al., Advanced photonics research, 2021, 2 (11), 2100150 Functional Materials and Microsystems | fmm.rmit.edu.au | 😏 @fun_materials

Summary

- Multilayer BP organic hybrid broadband photodetectors
 - Simple hybridization process
 - Broadband spectral detection range: 280 nm (UV) to 1050 nm (near-IR)
 - High responsivities \rightarrow up to 4 × 10³ A W⁻¹
 - No external gating needed (V_G = 0)
 - Low operating voltages (V_{DS} = 50 mV)
 - Stable in ambient conditions > 28 days
- Applications
 - Colour imaging
 - Optical communications

Connect With Us!

- Jamie (Mei Xian) Low
 - jamie.low3@rmit.edu.au
- Professor Sumeet Walia
 - sumeet.walia@rmit.edu.au
- Professor Madhu Bhaskaran
 - madhu.bhaskaran@rmit.edu.au
- Professor Sharath Sriram
 - sharath.sriram@rmit.edu.au

