V\textsubscript{3}O\textsubscript{5}: a promising material for solid-state neurons

Sujan Kumar Dasa,1, Sanjoy Kumar Nandia, Camilo Verbel Marquezb, Armando Rúab, Mutsunori Uenumac, Etienne Puyood, David Albertinid, Nicolas Babouxd, Teng Lue, Yun Liue, Shimul Kanti Natha, Thomas Ratcliffa, Robert G Ellimana

a Research School of Physics, The Australian National University, Canberra, ACT, Australia
b Department of Physics, University of Puerto Rico, Mayaguez, Puerto Rico, USA
c Information Device Science Laboratory, Nara Institute of Science and Technology (NAIST), Nara, Japan
d Université Lyon, INSA Lyon, CNRS, Ecole Centrale de Lyon, CPE Lyon, INL, France
e Research School of Chemistry, The Australian National University, Canberra, ACT, Australia

Current controlled negative differential resistance (NDR) in metal-oxide-metal (MOM) devices is of interest as the basis of nanoscale relaxation oscillators for use as solid-state neurons in neuromorphic computing arrays [1]. Vanadium dioxide (VO\textsubscript{2}) has received particular attention as an oxide material for neuromorphic computing applications due to its excellent switching characteristics. For example, a coupled VO\textsubscript{2} threshold switching devices were capable of emulating 23 distinct biological neuron spiking characteristics, whereas 103 conventional CMOS logic gates can replicate only ten basic neural behaviours [2]. However, despite these attractive features, the IMT temperature of VO\textsubscript{2} (~340 K) is below the typical operating temperature (400 K) of modern computers [3] which arise a concern on its suitability for practical applications.

V\textsubscript{3}O\textsubscript{5} is one of the stable phases of the vanadium-oxide system which has an IMT temperature above 400 K ($T\text{IMT} \sim 420$K) that meets the requirements for CMOS compatibility. A little attention has been devoted to the understanding of its IMT or electrical switching properties. We have demonstrated volatile NDR characteristics and fast spiking oscillatory behaviour in V\textsubscript{3}O\textsubscript{5}-based MOM structures. To understand the origin of switching mechanism in V\textsubscript{3}O\textsubscript{5}, we performed in-operando mid-wave infrared (MWIR) mapping, scanning thermal microscopy (SThm) and optical reflectivity measurements of device during the switching process. By combining these in-operando temperature measurements and finite element simulations, we have shown that the NDR response is a direct consequence of continuous current constriction and self-filamentation processes that can induce the IMT in the V\textsubscript{3}O\textsubscript{5} thin film. Further, we have shown that V\textsubscript{3}O\textsubscript{5} offers stable NDR characteristics up to 410 K which is consistent with the IMT temperature of V\textsubscript{3}O\textsubscript{5} and can generate different coupling oscillation behaviour which is the basis to emulate neural functionality. These results show that V\textsubscript{3}O\textsubscript{5}-based devices may be better placed than VO\textsubscript{2} devices to meet the demands of high-density neuromorphic computing applications.

1Correspondence: Sujan Kumar Das (sujan.das@anu.edu.au)