Enhanced screening in polymer melts with periodic boundary conditions

Nathan Clisby Swinburne University of Technology Melbourne, Australia nclisby@swin.edu.au

AIP Congress Adelaide 13 December, 2022

## **Dense polymer systems**

- Joint work with Burkhard Dünweg of MPI for Polymer Research, Mainz.
- Polymer melt: very dense system of polymers where each polymer interacts with many other polymers.
- Two competing effects: self-repulsion causes the walk to spread out (like for the self-avoiding walk), while crowding from neighbouring polymers compresses the polymer.
- Remarkably, to leading order these effects cancel, and in a polymer melt each individual chain behaves like a simple random walk and obeys Gaussian statistics.<sup>1</sup> This is known as "Flory screening".

<sup>1</sup>de Gennes, P. G., *Scaling Concepts in Polymer Physics*, Cornell University Press: 1979.

### **Dense polymer systems**

• We measure correlations in the chain via the bond correlation function:

$$\mathcal{C}(s) = rac{1}{b^2} \left\langle ec{l_i} \cdot ec{l_{i+s}} 
ight
angle$$

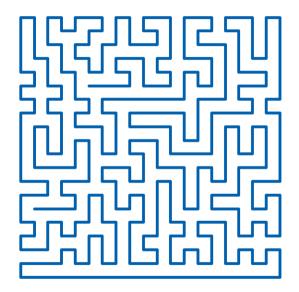
- For a random walk / Brownian motion, C(s) decays exponentially rapidly.
- In a melt, the leading-order correction causes C(s) to decay with a power law<sup>2</sup>:  $C(s) \sim s^{-3/2}$ .
- We wish to study within chain correlations and other phenomena, e.g. knotting.
- Difficult, because dynamics (including molecular dynamics) for long polymers very slow due to entanglement.

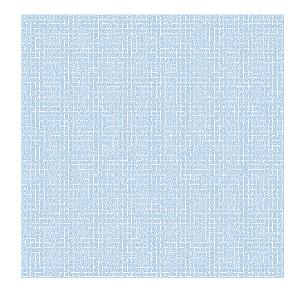
<sup>2</sup>Wittmer, J. P. et al. EPL (Europhysics Letters) 2007, 77, 56003.

3 / 18

## Hamiltonian paths

- Hamiltonian paths are self-avoiding walks which visit every vertex in a graph.
- Generally take the graph to be a region of the square or simple cubic lattices.
- Model of the crystal phase of polymers.
- Can extend to polymer melts which involve many paths.
- Universality implies that these lattice models capture essential physics of dense polymer systems.
- What do they look like?







## Sampling dense polymer systems

- Connectivity changing Monte Carlo moves, in particular backbite moves, very effective.
- Due to slow equilibration of polymer melts, the quest for efficient Monte Carlo moves has been of interest for a long time.
- For system size N, equilibration in O(N) Markov chain time steps.

#### Partial history of connectivity changing moves

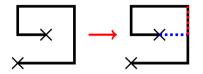
- Early work in 1980s by Olaj and Lantschbauer<sup>3</sup>, Mansfield<sup>4</sup>.
- Later: Deutsch<sup>5</sup>, Theodorou and collaborators<sup>6</sup>, Jacobsen and collaborators<sup>7</sup>.

<sup>3</sup>Olaj, O. F.; Lantschbauer, W. Macromolecular Rapid Communications 1982, 3, 847–858.
<sup>4</sup>Mansfield, M. L. J. Chem. Phys. 1982, 77, 1554–1559.
<sup>5</sup>Deutsch, J. M. J. Chem. Phys. 1997, 106, 8849–8854.
<sup>6</sup>Karayiannis, N. C. et al. J. Chem. Phys. 2002, 117, 5465–5479.
<sup>7</sup>Jacobsen, J. L. Phys. Rev. Lett. 2008, 100, 118102.

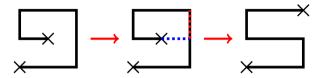
Backbite move: choose an end, extend by a single step which will form a loop, traverse loop in opposite direction and delete last bond.

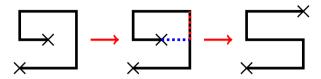


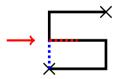
۸

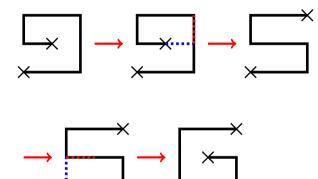


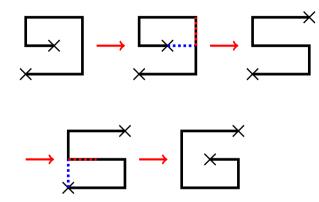
۸











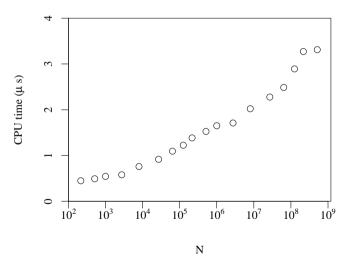
Each time we make a backbite move we create a loop, delete the edge that completes the loop, and *reverse* the orientation of the remaining edges of the loop.

8 / 18

### **Backbite implementation**

- For the simple cubic lattice, loops are of mean size O(N).
- $\Rightarrow$  mean CPU time per backbite move O(N)?
- Binary tree implementation: to reverse O(N) steps requires  $O(\log N)$  operations ("tree rotations").
- For simple cubic lattice, mean size of loops is O(N).
- L = 800, N = 512 million:
  - Reverse 178 million steps, · · ·
  - · · · or perform 18.7 tree rotations.
- Very fast in practice.

#### **CPU time per backbite move** $\mathbb{Z}^3$

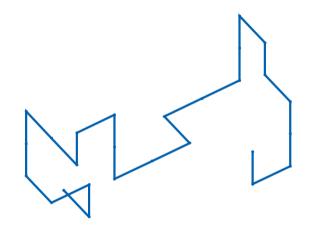


# A single dense polymer with PBC

- Can a Hamiltonian path with periodic boundary conditions (PBC) reproduce behaviour of a polymer melt?
- Can explicitly see random walk behaviour for d = 3 when we unwind it.
- Multiple copies are space filling, because in reduced coordinates the walk must fill the original grid.
- In the large N limit, do we get the same behaviour as the polymer melt?



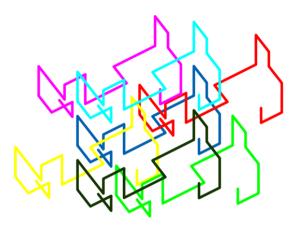
 $40 \times 40$  grid, with copies from winding. Note that the walk is disc like.



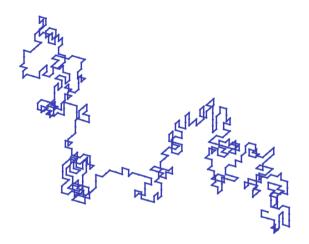
 $3\times3\times3$  grid.

.

Enhanced screening in polymer melts 12 / 18



 $3\times3\times3$  grid, with copies from winding around.



 $8 \times 8 \times 8$  grid; random walk behaviour clearly observable.

## A single dense polymer with PBC

- $N = L^3$ ; random walk behaviour.
- Subchains of length *s* do not "feel" the boundary until they wind around the box, that is when

$$s^{1/2} = L = N^{1/3};$$
  
 $\Rightarrow s = L^2 = O(N^{2/3})$ 

- For  $s \ll L^2$  we expect that the subchain will behave as in a melt.
- A priori unclear what will happen for  $s \gg L^2$ .

### A single dense polymer with PBC

- Wittmer et al. predicted power-law within-chain correlations. This results in leading correction to scaling for  $\langle R_F^2 \rangle$  to be  $O(s^{-1/2})$  for a chain of length s.
- Expect that universal amplitude ratios assume random walk values.
- Together:

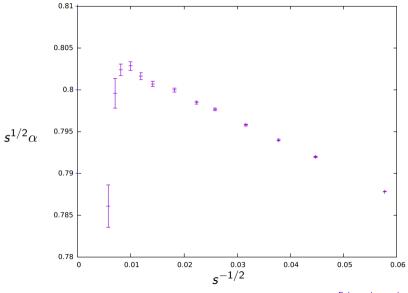
$$rac{\langle R_E^4 
angle}{\langle R_E^2 
angle^2} = rac{5}{3} \left( 1 + rac{a}{s^{1/2}} + rac{b}{s} + \cdots 
ight)$$

• We sample systems with L = 300 so  $N = 27 \times 10^6$ , and expect that subchains of length  $s \lesssim L^2 = 9000$  will behave as if they are in a melt.

• Estimate:

$$\alpha = \frac{\langle R_E^4 \rangle}{\langle R_E^2 \rangle^2} - \frac{5}{3}, \qquad s^{1/2} \alpha = a' + \frac{b'}{s^{1/2}} + \cdots$$

Enhanced screening in polymer melts 14 / 18



Enhanced screening in polymer melts

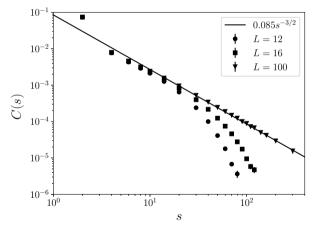
.

— 15 / 18

#### **Bond-vector autocorrelation**

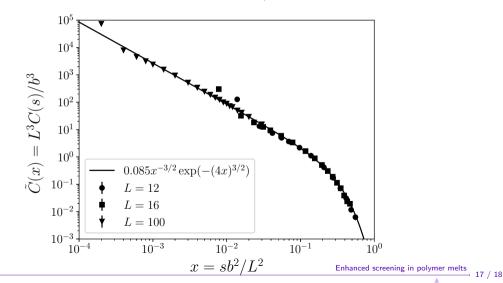
We study the bond-vector autocorrelation function C(s), where s is the separation along the chain.

- Expect C(s) decays as  $s^{-3/2}$ ; this leads to the  $s^{-1/2}$  correction term for  $\langle R_E^4 \rangle / \langle R_E^2 \rangle^2$ .
- But, once s ~ L<sup>2</sup> decay is far more rapid! The autocorrelations are screened once the walk wraps around the box.
- Data collapse possible in terms of a scaling variable.



Enhanced screening in polymer melts

 $\tilde{C}(x) = (L^3/b^3)C(s)$  as a function of the finite-size scaling variable  $x = sb^2/L^2$ . (Note that the error bars are not visible at this scale.)

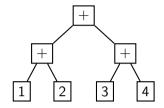


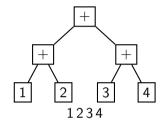
# Conclusion

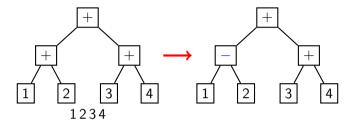
- Backbite moves can be implemented very efficiently via a binary tree.
- Working with subchains of single long chain with PBC seems like a viable way to understand melts.
- We verify Wittmer et al.'s prediction of the  $s^{-3/2}$  decay in correlations and  $s^{-1/2}$ correction to the universal amplitude ratio to high precision.
- Open questions regarding enhanced convergence / Flory screening.
- Numerically well understood, and we have a complete empirical description.
- Paper being written up now ...

# Conclusion

- Backbite moves can be implemented very efficiently via a binary tree.
- Working with subchains of single long chain with PBC seems like a viable way to understand melts.
- We verify Wittmer et al.'s prediction of the  $s^{-3/2}$  decay in correlations and  $s^{-1/2}$ correction to the universal amplitude ratio to high precision.
- Open questions regarding enhanced convergence / Flory screening.
- Numerically well understood, and we have a complete empirical description.
- Paper being written up now ...
- ... but we are in search of a theory from first principles!







Enhanced screening in polymer melts

