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Dense polymer systems

Joint work with Burkhard Dünweg of MPI for Polymer Research, Mainz.

Polymer melt: very dense system of polymers where each polymer interacts with
many other polymers.

Two competing effects: self-repulsion causes the walk to spread out (like for the
self-avoiding walk), while crowding from neighbouring polymers compresses the
polymer.

Remarkably, to leading order these effects cancel, and in a polymer melt each
individual chain behaves like a simple random walk and obeys Gaussian statistics.1

This is known as “Flory screening”.

1de Gennes, P. G., Scaling Concepts in Polymer Physics, Cornell University Press: 1979.
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Dense polymer systems

We measure correlations in the chain via the bond correlation function:

C (s) =
1

b2

〈
l⃗i · l⃗i+s

〉
For a random walk / Brownian motion, C (s) decays exponentially rapidly.

In a melt, the leading-order correction causes C (s) to decay with a power law2:
C (s) ∼ s−3/2.

We wish to study within chain correlations and other phenomena, e.g. knotting.

Difficult, because dynamics (including molecular dynamics) for long polymers very
slow due to entanglement.

2Wittmer, J. P. et al. EPL (Europhysics Letters) 2007, 77, 56003.

3 / 18
Enhanced screening in polymer melts

▲



Hamiltonian paths

Hamiltonian paths are self-avoiding walks which visit every vertex in a graph.

Generally take the graph to be a region of the square or simple cubic lattices.

Model of the crystal phase of polymers.

Can extend to polymer melts which involve many paths.

Universality implies that these lattice models capture essential physics of dense
polymer systems.

What do they look like?
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Sampling dense polymer systems

Connectivity changing Monte Carlo moves, in particular backbite moves, very
effective.

Due to slow equilibration of polymer melts, the quest for efficient Monte Carlo
moves has been of interest for a long time.

For system size N, equilibration in O(N) Markov chain time steps.
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Partial history of connectivity changing moves

Early work in 1980s by Olaj and Lantschbauer3, Mansfield4.

Later: Deutsch5, Theodorou and collaborators6, Jacobsen and collaborators7.

3Olaj, O. F.; Lantschbauer, W. Macromolecular Rapid Communications 1982, 3, 847–858.
4Mansfield, M. L. J. Chem. Phys. 1982, 77, 1554–1559.
5Deutsch, J. M. J. Chem. Phys. 1997, 106, 8849–8854.
6Karayiannis, N. C. et al. J. Chem. Phys. 2002, 117, 5465–5479.
7Jacobsen, J. L. Phys. Rev. Lett. 2008, 100, 118102.
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Backbite move: choose an end, extend by a single step which will form a loop, traverse
loop in opposite direction and delete last bond.
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Backbite moves for sampling Hamiltonian paths.

Each time we make a backbite move we create a loop, delete the edge that completes
the loop, and reverse the orientation of the remaining edges of the loop.
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Backbite implementation

For the simple cubic lattice, loops are of mean size O(N).

⇒ mean CPU time per backbite move O(N)?

Binary tree implementation: to reverse O(N) steps requires O(logN) operations
(“tree rotations”).

For simple cubic lattice, mean size of loops is O(N).

L = 800, N = 512 million:

Reverse 178 million steps, · · ·
· · · or perform 18.7 tree rotations.

Very fast in practice.
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A single dense polymer with PBC

Can a Hamiltonian path with periodic boundary conditions (PBC) reproduce
behaviour of a polymer melt?

Can explicitly see random walk behaviour for d = 3 when we unwind it.

Multiple copies are space filling, because in reduced coordinates the walk must fill
the original grid.

In the large N limit, do we get the same behaviour as the polymer melt?
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40× 40 grid, with copies from winding.
Note that the walk is disc like.
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3× 3× 3 grid.
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3× 3× 3 grid, with copies from winding around.
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8× 8× 8 grid; random walk behaviour clearly observable.
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A single dense polymer with PBC

N = L3; random walk behaviour.

Subchains of length s do not “feel” the boundary until they wind around the box,
that is when

s1/2 = L = N1/3;

⇒ s = L2 = O(N2/3).

For s ≪ L2 we expect that the subchain will behave as in a melt.

A priori unclear what will happen for s ≫ L2.
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A single dense polymer with PBC

Wittmer et al. predicted power-law within-chain correlations. This results in
leading correction to scaling for ⟨R2

E ⟩ to be O(s−1/2) for a chain of length s.

Expect that universal amplitude ratios assume random walk values.

Together:

⟨R4
E ⟩

⟨R2
E ⟩2

=
5

3

(
1 +

a

s1/2
+

b

s
+ · · ·

)
We sample systems with L = 300 so N = 27× 106, and expect that subchains of
length s ⪅ L2 = 9000 will behave as if they are in a melt.

Estimate:

α =
⟨R4

E ⟩
⟨R2

E ⟩2
− 5

3
, s1/2α = a′ +

b′

s1/2
+ · · ·
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s1/2α

s−1/2
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Bond-vector autocorrelation
We study the bond-vector autocorrelation function C (s), where s is the separation
along the chain.

Expect C (s) decays as
s−3/2; this leads to the
s−1/2 correction term for
⟨R4

E ⟩/⟨R2
E ⟩2.

But, once s ∼ L2 decay is
far more rapid! The
autocorrelations are
screened once the walk
wraps around the box.

Data collapse possible in
terms of a scaling variable.

100 101 102

s

10−6

10−5

10−4

10−3

10−2

10−1

C
(s
)

0.085s−3/2

L = 12

L = 16

L = 100

16 / 18
Enhanced screening in polymer melts

▲



C̃ (x) = (L3/b3)C (s) as a function of the finite–size scaling variable x = sb2/L2.
(Note that the error bars are not visible at this scale.)
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Conclusion

Backbite moves can be implemented very efficiently via a binary tree.

Working with subchains of single long chain with PBC seems like a viable way to
understand melts.

We verify Wittmer et al.’s prediction of the s−3/2 decay in correlations and s−1/2

correction to the universal amplitude ratio to high precision.

Open questions regarding enhanced convergence / Flory screening.

Numerically well understood, and we have a complete empirical description.

Paper being written up now . . .

. . . but we are in search of a theory from first principles!
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Time reversal symmetry elements in the binary tree nodes.
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How do we reverse sequences of steps which don’t align with the tree?
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