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superfluid properties studied under rotation 
 

unique vortex patterns found with unusual symmetries
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N. Navon, R. P. Smith, and Z. Hadzibabic, Nat. Phys. 17, 1334 (2021)
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L = 1.5ξ
w = 4dx/ξ
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ψ(r, t) = (ℋ̂GP−Ω ⋅ L̂z)ψ(r, t)

= (ℋ̂GP−iℏΩ[y
∂
∂x

− x
∂
∂y ])ψ(r, t)

the additional coupling leads to the appearance of vortices in the cloud

 (healing length) ,  ,  (energy)ξ = ℏ/ mn2dg2d {x, y}→{x, y}/ξ ψ→ n2d ψ E2D→E2D/(n2Dg2D)
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vortices arrange  
into square patterns
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= α0 + α1Ω + α2Ω2

 
 

Nvort = β1Ω

NFeyn =
m
πℏ

(2Lx,y)2Ω

R. P. Feynman, Prog. Low. Temp. Phys. 1, 17 (1955)
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interesting to understand how superfluidity manifests 
 

unusual vortex patterns can be obtained 
 

how does the shape of the uniform box change the ground state 
 

vortex lattice dynamics 
 

comparison with experiments feasible?
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