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Motivation

Topological Insulators: Materials
that present an insulating bulk
while still having conductive edge
states on their surface.

Efforts to optically characterize TI
seek to measure very small effects
with specific and
difficult-to-reproduce experimental
conditions (i.e. Faraday Rotation).

Objective: find new, fast, and
spatially resolved techniques to
characterize TIs optically.

Dirac Cone for Bi2Se3: ARPES vs
Theoretical

Joel Moore. “The birth of topological insulators”. In: Nature 464 (Mar.
2010), pp. 194–8

Faraday Rotation on TI Setup Sketch

Ken N Okada et al. “Terahertz spectroscopy on Faraday and Kerr
rotations in a quantum anomalous Hall state”. In: Nature

communications 7 (2016)
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Lagrangian Characterization of Topological Insulators

Lagrangian Characterization of Topological
Insulators
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Lagrangian Characterization of Topological Insulators Maxwell Equations for Topological Insulators

Maxwell Equations for Topological Insulators

The Lagrangian of TI is L0 + Laxion,
where L0 is the usual electromagnetic
Lagrangian and,

Laxion =
α

4π2

Θ(r, w)

µ0c
E(r, ω) ·B(r, ω).

This extra term changes the Maxwell
equations introducing an electromagnetic
coupling.

Sketch of Our Lens/Dipole/Material
System

The Helmholtz equation is, then,

∇× 1

µ(r, ω)
∇×E(r,w)− ω2

c2
ϵ(r, w)E(r, w)− i

ωα

cπ
[∇Θ(r, ω)×E(r, ω)] = 0.
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Lagrangian Characterization of Topological Insulators Boundary Conditions for TIs and Point Charge Example

Boundary Conditions for TIs and Point Charge Example

The boundary conditions for a
planar surface change.

[n̂ ·B]Σ = 0,

[n̂× (B/µ)]Σ = −
(
α∆Θ

4π2

)
n̂×E|Σ,

[n̂ ·E]Σ = 0,

[n̂× (ϵE)]Σ = −
(
α∆Θ

4π2

)
n̂ ·B|Σ.

Point charge near TI’s surface is a
good example.

Image Method Solution for Point Charge
Near a TI

Xiao-Liang Qi et al. “Inducing a Magnetic Monopole with Topological
Surface States”. In: Science 323.5918 (2009), pp. 1184–1187
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Lagrangian Characterization of Topological Insulators Boundary Conditions for TIs and Point Charge Example

Example: Point Charge near a Topological Insulator
Surface

Schematization of Topological Effects of a Point Charge Near a TI
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Characterizing the Reflected Emissions

Characterizing the Reflected Emissions
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Characterizing the Reflected Emissions Fresnel Coefficients

Reflected and Transmitted Fields

Planar wave ansatz + new
boundary conditions = Fresnel
coefficients.

New off-diagonal mixed
coefficients appear:

R =

(
RTE,TE RTE,TM

RTM,TE RTM,TM

)

These new coefficients are
small (×10−5) compared to
the usual ones.

J. A. Crosse, Sebastian Fuchs, and Stefan Yoshi Buhmann.
“Electromagnetic Green’s function for layered topological
insulators”. In: Phys. Rev. A 92 (6 Dec. 2015), p. 063831

TE polarized ray impacting the
three-layered Air-TI-Mu-Metal system
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Results Addition of a third Mu-Metal Sublayer

Adding a Third Mu-Metal Sublayer

Figure: Mixed reflective coefficients as a
function of the incidence angle for the
three possible configurations.

Figure: Mixed reflective coefficients as a
function of the normalized middle layer’s
thickness.
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Results Addition of a third Mu-Metal Sublayer

Electric Field Components

Figure: Electric field components Ei × λ of an x̂ oriented dipole, plotted in the y = 0
plane, as a function of z/λ and x/λ for (a) free-space, (b) an Air/Magnetodielectric
configuration, (c) an Air/TI configuration, and an Air/TI/Mu-Metal configuration.
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Results Addition of a third Mu-Metal Sublayer

Electric Field Components

Figure: Electric field components Ei × λ of an x̂ oriented dipole, plotted in the y = 0
plane, as a function of z/λ and x/λ for (a) free-space, (b) an Air/Magnetodielectric
configuration, (c) an Air/TI configuration, and an Air/TI/Mu-Metal configuration.
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Results Poynting Vector Analysis

Poynting Vector Deviation

Figure: Maximum deviation in the ŷ axis
of the Poynting vector for a set of
collection lens-dipole-TI configurations.

Figure: Difference between the Poynting
vector generated by an x̂ oriented dipole over
a TI’s surface Sθ, and over the equivalent
magnetodielectric surface S0.
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Conclusions

Summary

By adding a third Mu-Metal
sub-layer, we predict an increase
of ∼ ×102 for a TI with
impedance Z =

√
2.

We were able to pinpoint the
optimal TI middle layer’s
thickness, given its optical
characteristics.

We theorized a far-field Poynting
vector deviation of 0.28% with
an optimal system configuration,
for a room temperature TI.

Future prospects: Quantum
analysis and NV-center
characterization.
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Conclusions
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