

Quantum to classical behaviour of exciton polarons

B. Mulkerin, J. Levinsen, M. Parish

Introduction: Virial expansion for the optical response of doped two-dimensional semiconductors

Introduction

- Why ultracold atoms
- Impurity problem polaron
- Exciton-polarons

• Many-body theories

- Quantum virial expansion
- Green's function

• Conclusion and future goals

- Outlook
- Collaborators:
 - Francesa Marchetti
 - Antonio Tiene

Sneak peak: Temperature dependence

- Interactions are controllable
 - Feshbach resonances tune shortrange interactions
- Controllable parameters:
 - Dimensionality
 - Statistics Bose or Fermi
 - Population imbalance

• Measure dynamics

- Stable for long times

VS

microseconds

attoseconds

- Theory test-bed
 - Compare theory to experiment

- Interactions are controllable
 - Feshbach resonances tune shortrange interactions
- Controllable parameters:
 - Dimensionality
 - Statistics Bose or Fermi
 - Population imbalance

• Measure dynamics

- Stable for long times

VS

microseconds

attoseconds

- Theory test-bed
 - Compare theory to experiment

Notoriously difficult to solve.

Try a single impurity

Interactions are controllable

 Feshbach resonances tune shortrange interactions

• Controllable parameters:

- Dimensionality
- Statistics Bose or Fermi
- Population imbalance

• Measure dynamics

- Stable for long times

 $\mathbf{v}\mathbf{s}$

microseconds

attoseconds

- Theory test-bed
 - Compare theory to experiment

Notoriously difficult to solve.

Try a single impurity

A. Schirotzek, et. al, PRL 102, 230402 (2009)

Polarons – Ultracold

Polarons - Ultracold

Polaron in ultracold gases: 2D experiment

N. Oppong et al. Phys. Rev. Lett. 122, 193604 (2019)

See: Chevy, Bruun, Levinsen, Parish, Massignan, Hu, Liu, Combescot, Cui, Scazza, Demler, Grimm, Zwierlein, Sagi

Polarons – Ultracold + semiconductor

Polaron in ultracold gases: 2D experiment

Exciton in doped 2D semiconductor:

N. Oppong et al. Phys. Rev. Lett. 122, 193604 (2019)

See: Chevy, Bruun, Levinsen, Parish, Massignan, Hu, Liu, Combescot, Cui, Scazza, Demler, Grimm, Zwierlein, Sagi

T. Smoleński et al PRL **123**, 097403 See: Suris, Emfikin, Rana, Sidler, Imamoglu, Glazov, Zipfel

Polarons – Ultracold + semiconductor

Polaron in ultracold gases: 2D experiment

Exciton in doped 2D semiconductor:

N. Oppong et al. Phys. Rev. Lett. 122, 193604 (2019)

See: Chevy, Bruun, Levinsen, Parish, Massignan, Hu, Liu, Combescot, Cui, Scazza, Demler, Grimm, Zwierlein, Sagi

T. Smoleński et al PRL **123**, 097403

See: Suris, Emfikin, Rana, Sidler, Imamoglu, Glazov, Zipfel

Few-body perspective: Trion picture

Many-body perspective: polaron picture

• What is the virial expansion? An expansion in the fugacity: $z=e^{\beta\mu}$

$$\Omega = -k_{\rm B}T\mathcal{Q}_1 \left[z + b_2 z^2 \cdots + b_n z^n + \cdots \right],$$

where $\mathcal{Q}_n = \operatorname{Tr}_n[\exp(-\mathcal{H}/k_{\rm B}T)]$

See: Ho, Mueller PRL 92 (2004); Ho, Zhou Nature 6 (2010); Nascimbene et al., Nature, 463, (2010); Liu, Hu, Drummond PRL 102 (2010); Ngampruetikorn, Levinsen, Parish PRL 111 (2013); Leyronas PRA 84 (2011); Sun, Zhang, Zhai PRL 125 (2020)

• What is the virial expansion? An expansion in the fugacity: $z = e^{\beta\mu}$

$$\Omega = -k_{\rm B}T\mathcal{Q}_1 \left[z + b_2 z^2 \cdots + b_n z^n + \cdots \right],$$

where $\mathcal{Q}_n = \operatorname{Tr}_n[\exp(-\mathcal{H}/k_{\rm B}T)]$

X-J Liu, Phys. Rep. **524**, (2013)

See: Ho, Mueller PRL 92 (2004); Ho, Zhou Nature 6 (2010); Nascimbene et al., Nature, 463, (2010); Liu, Hu, Drummond PRL 102 (2010); Ngampruetikorn, Levinsen, Parish PRL 111 (2013); Leyronas PRA 84 (2011); Sun, Zhang, Zhai PRL 125 (2020)

• What is the virial expansion? An expansion in the fugacity: $z = e^{\beta\mu}$

$$\Omega = -k_{\rm B}T \mathcal{Q}_1 \left[z + b_2 z^2 \cdots + b_n z^n + \cdots \right],$$

where $\mathcal{Q}_n = \operatorname{Tr}_n[\exp(-\mathcal{H}/k_{\rm B}T)]$

Apply the virial expansion to the impurity problem?

X-J Liu, Phys. Rep. 524, (2013)

The self-energy and Green's function applied to the virial impurity:

$$G_X(\omega) = \frac{1}{\omega - \Sigma(\omega)} \qquad A(\omega) = -\frac{1}{\pi} G_X(\omega + i0)$$

$$\Sigma(\omega) \simeq \frac{z}{\mathcal{A}} \sum_{\mathbf{q}} e^{-\beta \epsilon_{\mathbf{q}}} \mathcal{T}_0(\mathbf{q}, \omega + \epsilon_{\mathbf{q}}) \qquad \mathcal{T}_0(\mathbf{q}, \omega) = \frac{2\pi}{m_r} \frac{1}{\ln[-\varepsilon_T/(\omega - \epsilon_{T\mathbf{q}})]}$$

$$\Sigma = \mathcal{T}$$
 $\mathcal{T} = \{+\} \mathcal{T}$

See: Ho, Mueller PRL **92** (2004); Ho, Zhou Nature **6** (2010); Nascimbene et al., Nature, **463**, (2010); Liu, Hu, Drummond PRL **102** (2010); Ngampruetikorn, Levinsen, Parish PRL **111** (2013); Leyronas PRA **84** (2011); Sun, Zhang, Zhai PRL **125** (2020)

Quantum virial expansion - exciton-polaron

<u>Virial expansion:</u> valid at low doping or high temperature

Quantum virial expansion - exciton-polaron

<u>Virial expansion:</u> valid at low doping or high temperature

Photoluminesence:

$$A(\omega) = -\frac{1}{\pi} G_X(\omega + i0) \qquad P(\omega) = e^{-\beta \omega} A(\omega)$$
$$P(\omega) \simeq -\frac{1}{\pi} e^{-\beta \omega} \operatorname{Im} \frac{\Theta(-\omega - \varepsilon_T)}{\omega - \Sigma_{\text{att}}(\omega)} - \frac{1}{\pi} \operatorname{Im} \frac{1}{\omega - \Sigma_{\text{rep}}(0)}$$

Injection and ejection rf spectroscopy:

Liu, JL & Parish, PRL (2019)

Quantum virial expansion - exciton-polaron

<u>Virial expansion:</u> valid at low doping or high temperature

Photoluminesence:

$$A(\omega) = -\frac{1}{\pi} G_X(\omega + i0) \qquad P(\omega) = e^{-\beta \omega} A(\omega)$$
$$P(\omega) \simeq -\frac{1}{\pi} e^{-\beta \omega} \operatorname{Im} \frac{\Theta(-\omega - \varepsilon_T)}{\omega - \Sigma_{\text{att}}(\omega)} - \frac{1}{\pi} \operatorname{Im} \frac{1}{\omega - \Sigma_{\text{rep}}(0)}$$

Injection and ejection rf spectroscopy:

Liu, JL & Parish, PRL (2019)

Analytical form – straight forward to implement:

$$\Sigma_{\text{rep}}(0) \simeq \frac{z(m/m_r)T}{\pi^2 + \ln^2(e^{\gamma_E}\beta\varepsilon_T)} \left[\ln(e^{\gamma_E}\beta\varepsilon_T) - i\pi\right]$$

$$\Sigma_{\text{att}}(\omega) \simeq -z\varepsilon_T(\frac{m_T}{m_X})^2 e^{\frac{m_T}{m_X}\beta(\omega + \varepsilon_T)} \left[\text{Ei}\left[-\frac{m_T}{m_X}\beta(\omega + \varepsilon_T)\right] + i\pi\Theta(-\omega - \varepsilon_T)\right]$$

Breakdown of the quasi particle description for Att. Branch – peak and tail come from trion scattered states.

Optical response of doped semiconductors Electron recoil: see Zipfel et al. PRB 105, 075311 (2022)

Few-body perspective: Trion picture

Many-body perspective: polaron picture

• Optical response of doped semiconductors -Electron recoil: see Zipfel et al. PRB 105, 075311 (2022)

Few-body perspective: Trion picture

Many-body perspective: polaron picture

Theory curves are broadened with: $\eta=1\mathrm{meV}$

Binding energy of experiment: 25 meV

Binding energy of theory: 22.5meV

Optical response of doped semiconductors Electron recoil: see Zipfel et al. PRB 105, 075311 (2022)

Few-body perspective: Trion picture

Many-body perspective: polaron picture

- With fitted binding energy we calculate the PL spectra
- For small fugacity there is excellent agreement
- For low temperatures there is some deviation.
- Exponential tail, onset, peak position.

Theory curves are broadened with: $\eta = 1 \text{meV}$

Binding energy of experiment: $25\mathrm{meV}$

Binding energy of theory: 22.5meV

Application: binding energy

Application: binding energy

- Calculate binding energy from peak position
 - Exp. Assumes the onset is the attractive peak position
 - No fitting parameters
 - Measured binding energy is 10% larger than theory

Application: binding energy

- Calculate binding energy from peak position
 - Exp. Assumes the onset is the attractive peak position
 - No fitting parameters
 - Measured binding energy is 10% larger than theory

• Connection to trion picture:

Identical in the high temperature limit Can be seen as a low energy expansion of the Green's function:

$$G_X(\omega) \simeq \frac{1}{\omega} + \frac{1}{\omega^2} \Sigma(\omega)$$

Low temperature or high doping we consider the finite temperature Chevy Ansatz:

See: F. Chevy, PRA (2006) Liu, JL & Parish, PRL (2019)

Low temperature or high doping we consider the finite temperature Chevy Ansatz:

See: F. Chevy, PRA (2006) Liu, JL & Parish, PRL (2019)

Many body Green's function:

$$G_X(\omega + i0) = \sum_n \frac{|\varphi_0^{(n)}|^2}{\omega - E^{(n)} + i0}$$

Optical absorption:

$$A(\omega) = -\frac{1}{\pi}G_X(\omega + i0)$$

Asymmetric emission:

Transition from exciton polaron to trion-hole continuum:

Asymmetric emission:

Virial and many-body approximation are equivalent at high temperature (or low doping):

Expand the many-body T-matrix: $\mathcal{T} \simeq \mathcal{T}_0$ How does this change coupling to light in polaron-polaritons Transition from exciton polaron to trion-hole continuum:

Conclusion and future goals of polaron systems

Virial expansion

- Straight forward to implement
- Obtains excellent results

• Finite temperature correlations

- We lose the attractive polaron
- Matches virial for high T

Outlook

- Polaron-polaron interactions
- Dynamics of impurities

- Collaborators:
 - Francesa Marchetti
 - Antonio Tiene

