Impact of the Purcell and Spontaneous Emission Factors in Nanowire Lasers

P. Reyhanian, C. J. Lobo, C. G. Poulton, and A. Agrawal

School of Electrical and Data Engineering, University of Technology Sydney, NSW 2007, Australia.

School of Mathematical, and Physical Sciences, University of Technology Sydney, NSW 2007, Australia.

Abstract In this paper, we present a numerical estimation of spontaneous emission factor for nanowire lasers and, investigate the impact of Purcell effect F and spontaneous emission factor β on the threshold and the L-L curves. Theoretical calculations provide more insights into the laser behaviour as they predict spontaneous emission coupling efficiency before fabrication and are helpful to optimise the cavity [1].

Results and discussion The rate equations for nanowire lasers are written as:

$$\frac{dN}{dt} = \frac{\eta P}{h f V} - \frac{(1 - \beta_0)N}{t_{sp}} - \frac{F \beta_0 N}{t_{sp}}$$

$$\frac{dS}{dt} = \Gamma \frac{F \beta_0 N}{t_{sp}} + \Gamma g S - \frac{S}{t_p}$$

$F = \frac{3}{4\pi^2} \left(\frac{\lambda}{n} \right)^3 \left(\frac{Q}{V} \right)$ is the Purcell factor [2]. β and β_0 are spontaneous emission factors with and without Purcell effect, respectively and, are related as $\beta = \frac{F \beta_0}{1 + (F - 1) \beta_0}$. β is usually treated as a fitting parameter shaping the height of the kink in the L-L curves. However, we propose $\beta \approx \frac{\lambda^3 L_z}{2\pi^2 V \Delta \lambda n^2}$ for multiple quantum disks embedded in nanowire lasers. $\Delta \lambda$ is spontaneous emission linewidth, V is the Volume, and L_z is the thickness of the gain medium. β is calculated with the same approach as [3] using the ratio between spontaneous emission rate into the lasing mode to the total spontaneous emission rate. For the nanowire laser in [4], we calculate the threshold to be around $1.6 \mu J cm^{-2}$, $F \approx 26.17$, and $\beta \approx 0.1$. This agrees with experimental results. Solving (1) for different values of Purcell factors ranging from 26 to 1 shows that lower dimensions of nanowire result in higher F which decreases the threshold non-linearly as shown in Figure 1a. Meanwhile, higher F provides more spontaneous emissions to couple into the lasing mode making less pronounced kinks as β gets closer to unity in Figure 1b.

Figure 1. a) Impact of the Purcell factor, b) Impact of spontaneous emission factor