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QUANTUM OPTICS

Entanglement – correlations without interaction
• Entangled photons are interconnected
• Measurement of one photon affects the other photon
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QUANTUM OPTICS

Entanglement – correlations without interaction

Entangled state #2:  |A1,B1 〉+ |A2,B2 〉(another set of parameters)
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QUANTUM OPTICS

Applications of entanglement

Secure communication Fast computation Precise metrology
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Creating a pair 
of entangled 
photons using 
nonlinearity 
(SPDC)

Entanglement
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Powerful 
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laser
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Can we control
entanglement with a laser 
though optical 
nonlinearity?

Two
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photons
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ON-CHIP QUANTUM OPTICS

• Generating 
entangled photons 
on a nonlinear chip 
• Control is complex, 

requires thermo-
optical or electro-
optical tuning



LASER AND TWO PHOTONS 
ON A CHIP
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LASER AND TWO PHOTONS 
ON A CHIP

Correlations
• Probability of photon A in the channel nA

while photon B is in the channel nB

Channel with 
photon A

Channel with 
photon B

Probability 
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Results

Solntsev et al., PRL 108, 023601 (2012)
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LASER AND TWO PHOTONS 
ON A CHIP

Results Experiment

Channel with 
photon A

Channel with 
photon B

Theory

Channel with 
photon A

Channel with 
photon B

Slightly different 
laser colour

(1 nm wavelength shift)
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Solntsev et al., PRL 108, 023601 (2012) Solntsev et al., PRX 4, 031007 (2014)



2 LASER BEAMS 
2 CHANNELS
2 PHOTONS

Controlling the phase between blue laser beams 
to tune entanglement between red photons

Setzpfandt, Solntsev et al., Laser & Photonics Reviews 10, 131-136 (2016)



2 LASER BEAMS 
2 CHANNELS
2 PHOTONS

Experimental results
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2 LASER BEAMS 
2 CHANNELS
2 PHOTONS

Experimental results

Channel with 
photon A

Channel with 
photon B

In-phase laser beams 

Entangled photons |A1,B2 〉+ |A2,B1 〉

Tuning 
Entanglement!

Setzpfandt, Solntsev et al., Laser & Photonics Reviews 10, 131-136 (2016)

Channel with 
photon A

Channel with 
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Entangled photons |A1,B1 〉+ |A2,B2 〉

Counter-phase laser beams 



WAVEGUIDE ENGINEERING

• Laser remains in central 
channels

• Pairs of photons couple 
to side channels

• Preserves Entanglement

Solntsev et al., APL 111, 261108 (2017)



POLING ENGINEERING

• Poling engineering 
allows generating 
arbitrary quantum 
states

Lenzini, Titchener et al., LSA 7, 17143 (2018)
Titchener et al., PRA, 101, 023809 (2020)



LOSS ENGINEERING

Blue photon

Red photon A

Red photon B

Flux of photons A
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Antonosyan, Solntsev, Sukhorukov
PRA 90, 043845 (2014)
Photonics Research 6, A6-A9 (2018) 

• Plasmonics uses metals -
optical loss is high
• Dialectics have scattering loss
• Tricks to make loss useful
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SPDC SPECTROSCOPY

• Measuring easy-to-detect photon A
to figure out how environment affects 
Mid-IR photon B

Laser 
photon

Visible / Near-IR
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Interaction

Solntsev et al., APL Photonics 3, 021301 (2018)



TOPOLOGY

R. J. Ren et al., Phot. Research 10, 456-464 (2022) Z.-K. Jiang et al., PRL 129, 173602 (2022)

• Topological protection of the generated entanglement



NONLINEAR QUANTUM OPTICS

• Entanglement is a fantastic resource!
• Tunable source of entangled photons on a nonlinear chip
• Nonlinearity creates and controls entanglement 

Solntsev et al., Reviews in Physics 2, 19 (2017)



MINIATURIZATION

Bulk

Photonic chip

Nanoscale



NONLINEAR QUANTUM OPTICS

Entanglement and nonlinearity 
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NONLINEAR QUANTUM OPTICS

Entanglement and nonlinearity in
• Nanoparticles
• Nanostructures
• Metasurfaces
• Metamaterials
• 2D materials

Quantum light control on the nanoscale
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WHY NONLINEARITY?

Single-photon sources
• quantum dots
• color centers
• etc.

Either helium cooled or low indistinguishability
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NONLINEAR NANO-RESONATORS

• Nonlinear optical 
frequency doubling 
in AlGaAs nano-disk 
• 10-4 efficiency
• Control of direction 

and polarization

Camacho et al., Nano Lett. 16, 7191−7197 (2016)



NONLINEAR NANO-RESONATORS

• Classical nonlinear 
processes can be used 
to predict quantum 
photon-pair 
generation

Solntsev et al., Frontiers in Optics, FF1C.5 (2016)
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NONLINEAR NANO-RESONATORS

• Classical nonlinear 
processes can be used 
to predict quantum 
photon-pair 
generation

• Predicting up to 105 Hz 
photon-pair rate
• First nanoscale 

nonlinear entangled
photon generator

Solntsev et al., Frontiers in Optics, FF1C.5 (2016)
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NONLINEAR NANO-RESONATORS

Marino, Solntsev et al., Optica, 6 1416-1422 (2019)



ENHANCEMENT

• AlGaAs metasurface 
design supporting 
BIC resonances
• Generation rate        

~ 1.75 kHz mW−1

M. Parry et al., Adv. Photonics 3, 055001 (2021)



ENHANCEMENT

• LiNbO3 metasurface
• 2 orders of magnitude 

enhancement

Santiago-Cruz et al., Nano Lett. 21, 4423–4429 (2021)



NANO-RESONATOR ON METAL

Olekhno et al., International Conference on Laser Optics (2022)



PLASMONIC ENTANGLEMENT 
GENERATION

• At the right pump 
frequency, generation 
is strongly enhanced
• Entangled plasmons

|A1,B1 〉+ |A2,B2 〉

• Robust for pump 
wavelengths and 
incidence angles

changing pump wavelength

changing pump incidence angle
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Olekhno et al., International Conference on Laser Optics (2022)



DIRECTIONALITY CONTROL

• Enhancement via Mie 
resonances
• Nonlinear Kerker effect
• Highly directional 

photon-pair generation

Nikolaeva et al., Phys. Rev. A 103, 043703 (2021)



LINBO3 MICROCUBES

N. M. H. Duong et al., Opt. Mat. Expr. 12, 3696-3704 (2022)

• 20.6 GHz/Wm
• 3 orders of magnitude 

more than the efficiency 
of biphoton generation 
in bulk nonlinear crystals



2D MATERIAL NONLINEAR OPTICS
• Frequency doubling in 2D materials
• Can be enhanced by integration with photonic structures

Y Li et al., Nano Lett. 
16, 1631-1636 (2016)

J. Day et al., Opt. Mater. 
Express 2360-2365(2016)

Microcavity Optomechanical platform 

T. K. Fryett et al., 2D 
Mater. 4, 1(2016)

Photonics cyrstal



Chen et al., LSA 6, e17060 (2017)
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Chen et al., LSA 6, e17060 (2017)

• 2D materials can add 
2d order nonlinearity

• Nanophotonics 
enhances nonlinearity
in 2D materials

• Next: quantum light

Frequency doubling

2D MATERIAL NONLINEAR OPTICS



Kim et al., Opt. Lett. 44, 5792-5795 (2019)

• hBN – transparent 2D dielectric, 
highly nonlinear

• 10000 µm2 hBN
flakes

• Integration with 
circular Bragg 
gratings

2D MATERIAL NONLINEAR OPTICS

Bernhardt et al., Opt. Lett. 46, 564-567 (2021)



ENHANCING 2D MATERIAL SHG 
WITH A BIC METASURFACE

• Sharp BIC resonance
• Field is concentrated on the 

top of the metasurface  
Bernhardt et al., Nano Letters, 20, 5309-5314 (2020)



ENHANCING 2D MATERIAL SHG 
WITH A BIC METASURFACE

WS2 flake 
on BIC 
metasurface

WS2 flake 
on Si substrate

Optical image Photoluminescence

• Over 1200 times SHG enhancement!
• Next: quantum light

Bernhardt et al., Nano Letters, 20, 5309-5314 (2020)



METASURFACES 
FOR QUANTUM OPTICS

Solntsev et al., Nature Phot. 15, 327–336 (2021)



CONCLUSION

• Nonlinearity creates and 
controls entanglement 
• Works on the nano-scale and 

at room temperature
• Now the quest is on for 
2D / meta / nano

hBN
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