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Proposal • 2P (phosphorus double donor):1P (single donor) spin qubit

• Describe the theory of  the multi donor quantum dot: wave function, electrical 

operation, noise 

• Electron dipole spin resonance (EDSR)

• Minimal computational expense: effective theory.

Motivation • 2P:1P qubit with Rabi freq. 1.2 MHz, 
, 0.8 ns two-qubit gate T*2 = 295 ns

• Donors offer atomic-scale precision placement, orientation 
specified properties (e.g. [110] qubit axis sees suppression of  
exchange oscillation)


• Scalable semiconductor multi-qubit chips possible.

• Hyperfine interaction between the qubit electron spin and P-

donor nucleus provides strong spin-orbit coupling (advantage 
over micromagnet engineering):  Hhf = 𝒜0 ∑

i
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Wavefunction • 2P: effective mass theory, 
Slater’s formalism

• Indirect bandgap in Si leads to multi valley physics, 
LCAO method gives ground-state wave function for 
double donor QD, consisting symmetric combination of  
valleys from the two donors.Ψ2D(r) = 1
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EDSR
• 2P-1P overlap in- 

              troduces          
            tunneling  
                   of   
     between QDs. 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• The 2P:1P GS is 
obtained using Hund-
Mulliken approach.


• A global  magnetic field 
resolves the spin-states  
into  and  states.


• Hyperfine interaction : 
 


• Rabi ratio:  ~ , 
million operations in one 
relaxation time.
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• When an ac  is applied, spin-flip takes place owing to time-dependent modulation of  difference in 
hyperfine between left and right dots. (EDSR)
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Noise
• Charge defect in the vicinity of  the physical qubit can modify the tunneling  

between the 2P and 1P dots as well as the self-energies of  the QDs.

• Such charge noise lead to decoherence of  the qubit state .

• Time of  decoherence ( ) from charge noise can be modelled as Random 

Telegraph noise: 


• Noise is the most detrimental at particular angular orientation, and is minimal 
at the qubit plane, supporting the in-plane gated control.
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Perorations • 2P ground state energy of  -121 meV, well-benchmarked 
against tight binding (TB), NEMO numerical models.


• 2P ground state valley weights explained by competing 
effects: effective mass anisotropy (EMA) and valley-orbit 
coupling (VOC).

• Complete in-plane gate control is possible, under a global out-of-plane 
magnetic field  an in-plane ac electric field  induces qubit spin-flip.


• The spin-flip EDSR mechanism relies on contact hyperfine coming from 
the donor nuclear spins.


•  ~ , fast qubit rotation; ~ , excellent Rabi ratio.

• Qubit geometry determines the best EDSR for when qubit axis  [111] and 

best Rabi ratio for when qubit axis  [100]. 

• Noise simulation produces the detrimental defect position to be , 

h=0, R=30 nm.

• Charge noise leads to EDSR single qubit gate error of  2%

• Efficient two qubit exchange gate of  3 GHz.

Bz Ẽ(t)

Tπ 50 ns T1/Tπ 106
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Fig.1: a) STM imaging of  the qubit, b) in-plane gate control 

Fig.2: a) STM imaging of  2P-1P qubit, b) Rabi oscillation, c) hyperfine mediated EDSR

Fig.3: Theoretical 
result for the 2P wave 
function from the 
EMA approach

Fig.4: a) EDSR Rabi time vs 2P-1P distance for different qubit geometry, 
b) Rabi ratio vs 2P-1P distance

Fig.5: a) charge defect schematic b) angular noise effect of  charge noise 
c) noise effect vs. height of  charge defect.
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