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Crystallisation & Symmetry Breaking 

Space crystallisation: Spontaneous breaking 
of space translational symmetry

Phases of matter, such as crystals, magnets, and conventional superconductors, as well 
as simple phase transitions can be described by spontaneous symmetry breaking.——Wiki

Spontaneous symmetry breaking:

the Hamiltonian of the system 
respects a symmetry:

But the macroscopic equilibrium state of 
the system is non-invariant under the 

symmetry transformation

P†HP = H

P |ψ0⟩ ≠ |ψ0⟩
(up to a global phase)



Open quantum system

Non-equilibrium

Magnetisation, Laser & Symmetry Breaking

Laser Theory, H. Haken, 1973

Close quantum systems

Equilibrium
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… prove a no-go theorem that rules out the 
possibility of time crystals defined as such, 
in the ground state or in the canonical 
ensemble of a general Hamiltonian, which 
consists of not-too-long-range interactions.
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Can a time crystal exist
This no-go theorem does not rule out:

(1) long-range interacting system

(2) non-equilibrium systems (Floquet)

Discrete 
Time 

Crystal

Discrete time-
translational 

symmetry (DTTS)

Nature 2017 back-to-back papers

Experimental evidences!

in a closed quantum system?

|ψ(t)⟩ ≠ |ψ(t + T )⟩
|ψ(t)⟩ = |ψ(t + 2T )⟩



Turning a Quantum Computer into a Time Crystal

on IBM’s quantum computer:

P. Frey, S Rachel, (U. of Melbourne) 


Science Advance 2022 (Thursday Talk)



Spontaneous Symmetry Breaking 

If the Hamiltonian obeys a symmetry: P†HP = H
H |ψ0⟩ = E0 |ψ0⟩

The ground state eigenstate should also obeys the same symmetry:

P |ψ0⟩ = |ψ0⟩ up to a global phase.

Time-independent quantum system 

HP = PH
H(P |ψ0⟩) = PH |ψ0⟩ = E0(P |ψ0⟩)

if the ground state is non-degenerate.

Symmetry breaking can only occur if there are degeneracy.
Nevertheless, real degeneracy are usually forbidden by group theory:

for example, Z2 symmetry has two irreducible representations. 

↑
↑

↓

↓
En = ± hx

|ψS⟩ = ( | ↑ ⟩ + | ↓ ⟩)/ 2

|ψA⟩ = ( | ↑ ⟩ − | ↓ ⟩)/ 2hx



Spontaneous Symmetry Breaking 
Spontaneous symmetry breaking occurs in the thermodynamic limit 
Transverse Ising Models with nearest-neighbour interactions:

|ψ (S)
0 ⟩ =

1

2 ( |ψ (↑)
0 ⟩ + |ψ (↓)

0 ⟩)
|ψ (A)

0 ⟩ =
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0 ⟩)

|ψ (↑)
0 ⟩ ≈ | ↑ ↑ ↑ . . . ↑ ⟩

|ψ (↓)
0 ⟩ ≈ | ↓ ↓ ↓ . . . ↓ ⟩
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C J Hamer and M N 
Barber 1981 J. Phys. A: 

Math. Gen. 14 241
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−J

Short-range correlated states 

Long-range correlated cat states 
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that does not obey the symmetry of the Hamiltonian. 



Floquet System

The stroboscopic (t = T , 2T , 3T , . . .) dynamics of an isolated periodically driven 
quantum system are determined by a time-independent Floquet Hamiltonian. 

Floquet formalism: Floquet states and Floquet quasi-eigenenergies:

Quantum time evolution:

ĤF = ∑
ν

ϵν |ϕν(0)⟩⟨ϕν(0) |

[Ĥ(t) − iℏ∂t] ϕν(t)⟩ = ϵν ϕν(t)⟩ ϕν(t)⟩ = ϕν(t + T )⟩

|Ψ(sT )⟩ = ∑
ν

cνe−iϵνsT ϕν(0)⟩ cν = ⟨ϕν(0) ∣ Ψ(0)⟩

ϵν → ϵν + mℏω

|ϕν(t)⟩ → eimωt |ϕν(t)⟩

Well defined within a Brillouin zone
There are No ground state in isolated 
Floquet systems. SSB can be defined as the 
situation where the steady state is less 
symmetrical than its parent Hamiltonian. 



Steady states and thermalisation

When a closed quantum system is driven periodically with period T, it approaches a 
periodic state synchronized with the drive in which any local observable measured 
stroboscopically approaches a steady value … here we show that for generic nonintegrable 
interacting systems, local observables become independent of the initial state entirely.

Expectation value of  
local observable: 

Longtime average:

Floquet-ETH:

O
νν

ν

⟨O⟩∞
One Floquet eigenstates consist of a mixture of 
the exponentially many eigenstates of the 
undriven Hamiltonian.
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Exhibition “UNDUPLICATED”  
at Hong Kong,  

https://recfro.github.io/unduplicated



Floquet and Wannier Mode
Single-particle Floquet 
Modes (T-periodic):

z
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Single-particle Wannier 
Modes (2T-periodic):

Mode 1 Mode 2
Φ1(z, t) Φ2(z, t)

J = ϵ1 − ϵ2 − ω/2
small but finite.ϕ1(z, t) ϕ2(z, t)



Single-particle picture
↑

↑
↓

↓

|ψS⟩ = ( | ↑ ⟩ + | ↓ ⟩)/ 2

|ψA⟩ = ( | ↑ ⟩ − | ↓ ⟩)/ 2hx

Φ1(z, t) = [ϕ1(z, t) + e−iπt/Tϕ2(z, t)]/ 2

Single particle system cannot have symmetry breaking:

Φ2(z, t) = [ϕ1(z, t) − e−iπt/Tϕ2(z, t)]/ 2

| ↑ ⟩Symmetry broken states | ↓ ⟩and are NOT degenerated and NOT eigenstates.

Φ1 Φ2
Φ1

Φ2

Symmetry broken states and are NOT pi-pairing and NOT Floquet states.Φ1 Φ2
Symmetry broken in the many-body states with interaction:

| ↑ ↑ . . . ↑ ⟩ Φ2Φ2 . . . Φ2 = |N1 = 0,N2 = N⟩



Previous studies
Mean-field GPE: K. Sacha PRA 2015 and Kuroś NJP 2020.

Time-dependent Bogoliubov: Kuroś NJP 2020.

Two-mode model: K. Sacha PRA 2015.

A concern in applying a mean-field (single-mode) or a few-mode approach to study time 
crystals and discrete time-translation symmetry breaking is whether the lack of 
thermalisation and decay of the condensate in such studies is an artefact imposed by 
the adopted approximations

a1 = cos(θ)
a2 = sin(θ) θm

θm

θm

θm



Truncated Wigner Approximation

(1) The Liouville von-Neumann Equation for the density operator is mapped onto the Functional 
Fokker-Planck Equation (FFPE) for the Wigner distribution functional.


(2) Neglecting the third-order functional derivatives, the FFPE is solved by the equivalent Ito 
Stochastic Field Equation.


 

(3) Initial stochastic field functions




(4) Observables are obtained via stochastic average. 




Key feature: 


(a) Asymptotic exact in the large boson particle number limit 

(b) Multi-mode theory that can treat thermalisation.

 are Bogoliubov modesuk(z), vk(z)
 is the condensate modeψc(z)

Many-body Hamiltonian:



TWA Results

gN = − 0.006 gN = − 0.012 gN = − 0.1

One-body 
projector:

Wannier 
Mode 2

z

t = 1000T

t = 999T

t = 0T

Initial 
Preparation

JW, Peter Hannaford, and Bryan Dalton 
New J. Phys. 23 063012 (2021)



Ns = N1 + N2

Only Two Modes

non-driving

gN = − 0.1

driving

gN = − 0.012
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TWA vs 2Mode

TWA Two-mode
Include many modes Only includes two modes

Exact quantum dynamical evolution 
Asymptotic exact in the large boson particle 
number limit. In practise, limited by finite 
particle number and initial state sampling



 Two-mode Results
Initial state: N1 = 0,N2 = 1000

gN = − 0.006

gN ≈ − 0.012

gN = − 0.02

Φ1(z, kT ) = Φ2(z, kT + T )

⟨N2(nT )⟩ =
N
2

⇒ F(z, kT ) = F(z, kT + T )

⟨N2(nT )⟩ = const ≠
N
2

⇒ F(z, kT ) = F(z, kT + 2T ) ≠ F(z, kT )

symmetric

broken

High frequency expansion:

JW, Krzysztof Sacha, Peter Hannaford, and Bryan J. Dalton PRA 104, 053327 (2021)
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Eigenenergies and degeneracy
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min {Δℰν} = min (ℰν − ℰν−1, ℰν+1 − ℰν)

⟨N2⟩ν
=

⟨N2⟩(U)
ν

 or ⟨N2⟩(L)
ν

ℰν < ℰedge

⟨N2⟩(S)
ν

ℰν ≥ ℰedge : Projection of  initial state pν
⟨N2⟩relax = ∑

ν

pν⟨N2⟩ν

Effective Hamiltonian can be mapped to 

the Lipkin-Meshkov-Glick model.

Double degeneracy below an analytical edge

|N1 = 0,N2 = 1000⟩Degeneracy No degeneracy



Symmetry broken edge

0

0.25

0.5

0.75

0.498 0.499 0.5 0.501 0.502
0

0.5

-0.006
-0.011
-0.012
-0.013
-0.015

0.01 0.02 0.03 0.04 0.05
0

0.25

0.5

0.75

0.498 0.499 0.5 0.501 0.502
0

0.5

-0.006
-0.011
-0.012
-0.013
-0.015

M̂G =
N

∑
i=1

( | χ⟩⟨χ | )i ⟨z ∣ χ⟩ = Φ2(z,0)

MG(kT ) = {N1(kT ) = N − N2(kT ) k = 1,3,5,…
N2(kT ) k = 0,2,4,…

|{θ, φ}⟩ = Λ2⟩1
Λ2⟩2

… Λ2⟩N
Λ2 = sin θeiφΦ1(t = 0) + cos θΦ2(t = 0)

Eini = ∑
ν

pνℰν



Conclusion
DTC: long-time steady state of an interacting many-body system. TWA, two-mode, …

SSB: many degenerated/pi-pairing (quasi-)eigen energies 
and short-range correlated (quasi-)eigen states 

Wannier 
Mode 2

suppress/absence of 
quantum thermalisation 

Future extension with TWA: 


• Finite temperature, “bigger” time crystal, higher dimension, dissipation


• DTC in kicked Lieb-Liniger model.



Thank You!
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