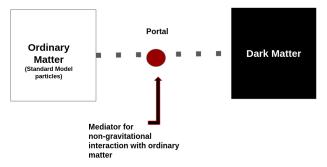
Search for Dark Matter in Invisible Higgs Decays with the ATLAS experiment

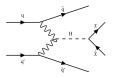
Harish Potti

The ARC Centre of Excellence for Dark Matter Particle Physics & The University of Adelaide


24th Australian Institute of Physics Congress - 2022

HIGGS PORTAL TO DARK SECTOR

The nature of dark matter is still unknown and it is one of the key questions in particle physics

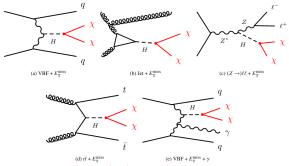


- Many BSM theories with various mediators
- Higgs boson could be a mediator between ordinary matter and dark matter
- Higgs decays into a pair of WIMPs like $\chi\chi$ in these models.

Harish Potti

INVISIBLE HIGGS DECAYS

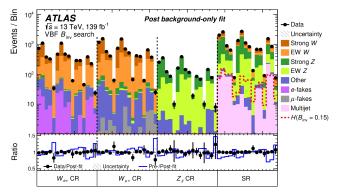
- In the SM, $B_{inv}(H \rightarrow \text{invisibles}) \sim 0.1\%$ due to $H \rightarrow ZZ^* \rightarrow 4\nu$
- In many BSM theories, *B_{inv}* is enhanced due to Higgs decays to stable dark matter particles
- ► E.g. SUSY (LSP), large extra dimensions (Graviscalar)
- Events are tagged using the associated production of W/Z or a recoiling jet


 Higgs boson will be invisible and will be manifested as the *"imbalance in momentum in transverse direction"* (MET)

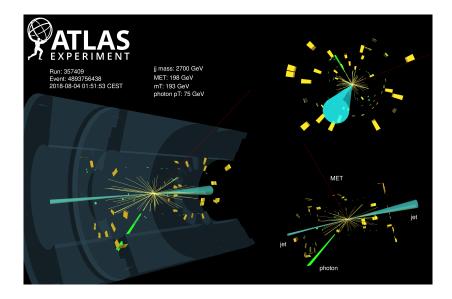
Harish Potti

ATLAS $H \rightarrow$ Invisibles searches

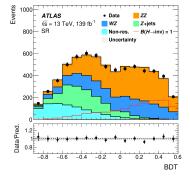
 ATLAS collaboration has performed five independent searches for invisible Higgs decays with full Run-2 data


Analysis	Results
VBF+MET	JHEP 08 (2022) 104
$MET+Z(\ell \ell)$	Phys. Lett. B 829 (2022) 137066
$t\bar{t} + MET$	ATLAS-CONF-2022-007
$VBF + MET + \gamma$	Eur. Phys. J. C 82, 105 (2022)
Monojet	Phys. Rev. D 103, 112006
Run-1 combination	JHEP11(2015)206
Combination	HIGG-2021-05

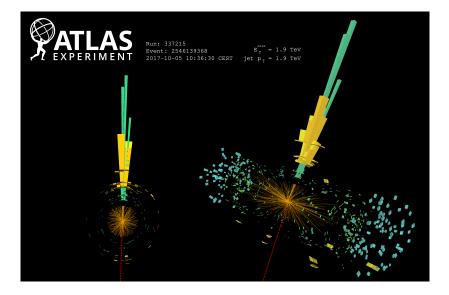
Harish Potti


(1) VBF + MET ANALYSIS

- Most powerful analysis
- Distinct characteristic is a pair of energetic jets with a wide pseudo-rapidity gap (|η_{ij}|) and a large invariant mass (m_{ij})
- Major bkgs: V + two jets due to QCD radiation
- $E_T^{\text{miss}} > 160 \text{ GeV}$, $p_T^{\text{all-jet}} > 140 \text{ GeV}$
- $B_{inv} < 0.145 (0.103)$ at 95% CL


Harish Potti

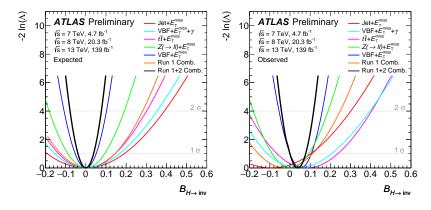
(2) VBF + MET + γ analysis


(3) $H \to \text{INVISIBLES: } E_T^{\text{MISS}} + (Z \to \ell \ell)$

- Requires $E_T^{\text{miss}} > 90 \text{ GeV}$ and to be back-to-back with $Z \to \ell \ell$
- Major backgrounds: $(Z \to \ell \ell)(Z \to \nu \nu),$ $(Z \to \ell \ell)(W \to \ell \nu),$ and Z+jets
- A BDT is trained to separate signal from the backgrounds
- Eight BDT input variables: $E_T^{\text{miss}}/H_T, y_{\ell\ell}, m_{\ell\ell}, \Delta R(\ell, \ell),$ $\Delta \phi(\ell \ell, E_T^{\text{miss}}), \text{ etc.}$
- Signal region acceptance times efficiency 8%
- ► B_{inv} < 0.19 (0.19) at 95% CL (Ref: 2111.08372)

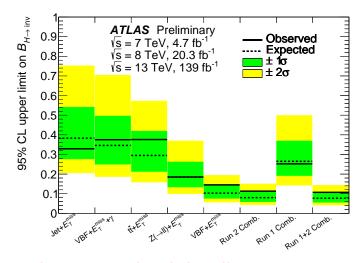
Harish Potti

(4) JET + MET

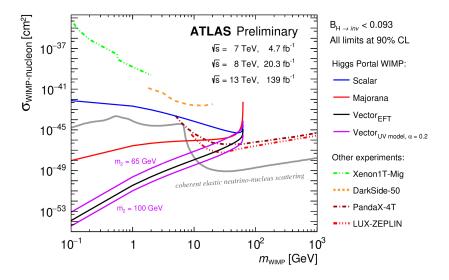

Harish Potti

COMBINATION OF THE HINV ANALYSES

- Overlap removal between the analyses
- Construction of a simultaneous binned likelihood function by combining the distributions of discriminant from each individual analysis
- Correlations of systematic uncertainties across individual analyses
- Likelihood scans and maximum likelihood fit to determine the best-fit branching ratio
- ► Setting upper limits on the *B*_{inv}


Results from the $H \rightarrow$ Invisibles Combination

Negative Log-likelihood scans for Asimov and Data fits



Results from the $H \rightarrow$ Invisibles Combination - 2

► Observed (expected) upper limits on the *B*_{inv}

DARK MATTER INTERPRETATION

SUMMARY

- MET-based signatures of invisible Higgs boson decays provides a great opportunity to search for DM with the ATLAS experiment.
- Five independent searches have been performed with the full Run-2 dataset
- ► Observed (expected) upper limit from the combination of these searches results in *B_{inv}* < 0.107 (0.077) at 95% CL</p>
- Many of the searches are statistically limited room for improvement with Run-3 data

Thank You!