Silicon-Germanium Ring Resonator On-Chip with High Q-factor in the Mid-Infrared

Marko Perestjuk ${ }^{1,2}$, Rémi Armand ${ }^{2}$, Alberto Della Torre ${ }^{2}$, Milan Sinobad ${ }^{3}$, Arnan Mitchell ${ }^{1}$, Andreas Boes ${ }^{1,4}$, Jean-Michel Hartmann ${ }^{5}$, Jean-Marc Fedeli ${ }^{5}$, Vincent Reboud ${ }^{5}$, Alfredo de Rossi ${ }^{6}$, Sylvain Cmbrié ${ }^{6}$, Christelle Monat ${ }^{2}$ and Christian Grillet ${ }^{2}$

${ }^{1}$ Integrated Photonics and Applications Centre, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
${ }^{2}$ Université de Lyon, Institut des Nanotechnologies de Lyon (INL, UMR-CNRS 5270), Ecole Centrale de Lyon, 69130 Ecully, France
${ }^{3}$ Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
${ }^{4}$ Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005, Australia
${ }^{5}$ CEA-Leti, Université Grenoble Alpes, 38054 Grenoble Cedex 9, France
${ }^{6}$ Thales Research and Technology, Campus Polytechnique, Palaiseau, France

"Silicon-Germanium Ring Resonator On-Chip with High Q-factor in the Mid-Infrared"

- Introduction
- Why Mid-Infrared?
- Why Silicon Germanium?
- Why High Q ring resonators?
- State of the art
- Design and fabrication of ring
- Loss and Q-factor measurement
- Simulation of frequency comb generation
- Fundamental absorption lines of many molecules in the MIR
\rightarrow high application potential

- Fundamental absorption lines of many molecules in the MIR

$$
\rightarrow \text { high application potential }
$$

- Lack of compact and low cost devices
- Proposed MIR sensor system

- Fundamental absorption lines of many molecules in the MIR
\rightarrow high application potential
- Lack of compact and low cost devices
- Proposed MIR sensor system

Broadband and Intense MIR Sources

Through Nonlinear Optics

Wave equation : $\nabla \times \nabla \times E(r, t)+\frac{1}{c^{2}} \frac{\partial^{2} E(r, t)}{\partial t^{2}}=-\mu_{0} \frac{\partial^{2} P(r, t)}{\partial t^{2}}$

$$
\boldsymbol{P}=\varepsilon_{0}\left(\chi^{(1)} \cdot \boldsymbol{E}\right)+\varepsilon_{0}\left(\chi^{(2)} \cdot \boldsymbol{E} \boldsymbol{E}+\chi^{(3)} \cdot \boldsymbol{E} \boldsymbol{E} \boldsymbol{E}+\cdots\right)
$$

Broadband and Intense MIR Sources

Through Nonlinear Optics

Wave equation : $\nabla \times \nabla \times E(r, t)+\frac{1}{c^{2}} \frac{\partial^{2} E(r, t)}{\partial t^{2}}=-\mu_{0} \frac{\partial^{2} P(r, t)}{\partial t^{2}}$

$$
\boldsymbol{P}=\varepsilon_{0}\left(\chi^{(1)} \cdot \boldsymbol{E}\right)+\varepsilon_{0}\left(\chi^{(2)} \cdot \boldsymbol{E} \boldsymbol{E}+\chi^{(3)} \cdot \boldsymbol{E} \boldsymbol{E} \boldsymbol{E}+\cdots\right)
$$

- Absorption $\longleftarrow \quad$ linear nonlinear
- Four wave mixing
- Dispersion
- Self phase modulation
- Cross phase modulation
- Soliton fission
- Raman scattering
- Brillouin scattering
- ...

Broadband and Intense MIR Sources

Through Nonlinear Optics

Wave equation : $\nabla \times \nabla \times E(r, t)+\frac{1}{c^{2}} \frac{\partial^{2} E(r, t)}{\partial t^{2}}=-\mu_{0} \frac{\partial^{2} P(r, t)}{\partial t^{2}}$

$$
\boldsymbol{P}=\varepsilon_{0}\left(\chi^{(1)} \cdot \boldsymbol{E}\right)+\varepsilon_{0}\left(\chi^{(2)} \boldsymbol{E} \boldsymbol{E}+\chi^{(3)} \cdot \boldsymbol{E} \boldsymbol{E} \boldsymbol{E}+\cdots\right)
$$

- Absorption $\longleftarrow \quad$ linear nonlinear
- Four wave mixing
- Self phase modulation
- Cross phase modulation
- Soliton fission
- Raman scattering
- Brillouin scattering
- Dispersion

Through Nonlinear Optics

Wave equation : $\nabla \times \nabla \times E(r, t)+\frac{1}{c^{2}} \frac{\partial^{2} E(r, t)}{\partial t^{2}}=-\mu_{0} \frac{\partial^{2} P(r, t)}{\partial t^{2}}$

$$
\boldsymbol{P}=\varepsilon_{0}\left(\chi^{(1)} \cdot \boldsymbol{E}\right)+\varepsilon_{0}\left(\chi^{(2)} \boldsymbol{E} \boldsymbol{E}+\chi^{(3)} \cdot \boldsymbol{E} \boldsymbol{E} \boldsymbol{E}+\cdots\right)
$$

- Absorption

nonlinear
- Four wave mixing
- Self phase modulation
- Cross phase modulation
- Dispersion
- Soliton fission
- Raman scattering
- Brillouin scattering

Two options for broadband sources:

Frequency Comb

Through Nonlinear Optics

Wave equation : $\nabla \times \nabla \times E(r, t)+\frac{1}{c^{2}} \frac{\partial^{2} E(r, t)}{\partial t^{2}}=-\mu_{0} \frac{\partial^{2} P(r, t)}{\partial t^{2}}$

$$
\boldsymbol{P}=\varepsilon_{0}\left(\chi^{(1)} \cdot \boldsymbol{E}\right)+\varepsilon_{0}\left(\chi^{(2)} \in \boldsymbol{E} \boldsymbol{E}+\chi^{(3)} \cdot \boldsymbol{E} \boldsymbol{E} \boldsymbol{E}+\cdots\right)
$$

- Absorption
$\longleftarrow \quad$ linear
nonlinear
- Four wave mixing
- Self phase modulation
- Cross phase modulation
- Dispersion
- Soliton fission
- Raman scattering
- Brillouin scattering

Two options for broadband sources:

Supercontinuum

Frequency Comb

Cavities are a crucial building block
But: many linear applications also possible for sensing

Transparency Window of Group IV Materials

- SOI has strong absorption beyond $3.5 \mu \mathrm{~m}$ wavelength due to the silicon dioxide
- SiGe and Ge based waveguides transparent deep into the MIR
- CMOS compatible
- Low loss and nonlinearities demonstrated in SiGe and Ge ${ }^{[2]}$

Fast Progress in the Last Years

Abstract

\section*{Research Article}

Mid-infrared octave spanning supercontinuum generation to $8.5 \mu \mathrm{~m}$ in silicon-germanium waveguides
Mlan Sinobad, ${ }^{1,2,7}$ Christelle Monat, ${ }^{1}$ Barry Luther-davies, ${ }^{3}$ Pan Ma, ${ }^{3}$ Stiephen Madden, ${ }^{3}$

APL Photonics

ARTCLE
sctitation.orfjumamalap

Photstonics

Mid-infrared supercontinuum generation in a low-loss germanium-on-silicon waveguide

```
Clu
```


 Wavelength

Gite This: ACS Photonics 2020, 7, 3423-3429

On-Chip Mid-Infrared Supercontinuum Generation from 3 to $13 \mu \mathrm{~m}$
Miguel Montesinos-Ballester,*** Christian Lafforgue," Jacopo Frigerio, Andrea Ballabio,
Vladyslav Vakarin, Qiankun Liu, Joan Manel Ramirez, Xavier Le Roux, David Bouville, Andrea Barzaghi, Vladyslav Vakarin, Qiankun Liu, Joan Manel Ramirez, Xavier Le Roux, David Bouville,
Carlos Alonso-Ramos, Laurent Vivien, Giovanni Isella, and Delphine Marris-Morini $0^{\text {Desas onne }}$

$\mathrm{Si}_{1-\mathrm{Cl}} \mathrm{Ge}_{\mathrm{x}}$
Si substrate

Experimental: $\lambda=7.5 \mu \mathrm{~m}$

- Impressive results over the past years
- But: Demonstrations of cavities in the MIR
so far lack at least one of the following:
- Integrability
- CMOS compatibility
- High Q-factor
- Sufficiently long λ
- Impressive results over the past years
- But: Demonstrations of cavities in the MIR
so far lack at least one of the following:
- Integrability
- CMOS compatibility
- High Q-factor
- Sufficiently long λ

- Impressive results over the past years
- But: Demonstrations of cavities in the MIR so far lack at least one of the following:
- Integrability
- CMOS compatibility

- High Q-factor
- Sufficiently long λ

SOS
$Q=151000$
R. Shankar et al., APL 102, 051108 (2013)

- Impressive results over the past years
- But: Demonstrations of cavities in the MIR so far lack at least one of the following:
- Integrability
- CMOS compatibility
- High Q-factor
- Sufficiently long λ

 R
R. Shankar et al., APL 102, 051108 (2013)

J.M. Ramirez et al., Opt. Lett. 44(2), 407-410 (2019)

S. Radosavljevic et al., Opt. Mat. Exp. 8(4), 824 (2018)
- Again, very impressive results, but:
- Demonstrations of combs in the MIR have the same problems as cavities:
- No integrability
- No CMOS compatibility
- Not sufficiently long λ

- Again, very impressive results, but:
- Demonstrations of combs in the MIR have the same problems as cavities:

- No integrability
- No CMOS compatibility
- Not sufficiently long λ

Fluoride crystalls

$\lambda_{\max }=2.5 \mu \mathrm{~m}$

- Suitable for frequency comb generation
- Anomalous dispersion required
- This will determine width/height
width

- Suitable for frequency comb generation
- Anomalous dispersion required
- This will determine width/height

$$
\mathrm{n}_{\mathrm{SiGe}}=3.57
$$

width

- Have a free spectral range (FSR) useful for sensing applications

$$
\mathrm{n}_{\mathrm{Si}}=3.42
$$

$-\mathrm{R}=250 \mu \mathrm{~m}$ (FSR of 53 GHz)

- Suitable for frequency comb generation
- Anomalous dispersion required
- This will determine width/height

$$
\mathrm{n}_{\mathrm{SiGe}}=3.57
$$

width

- Have a free spectral range (FSR) useful for sensing applications
$\mathrm{n}_{\mathrm{Si}}=3.42$
$-\mathrm{R}=250 \mu \mathrm{~m}$ (FSR of 53 GHz)
- High Q
- Reduce bending loss, lower bound for $\mathrm{R}=250 \mu \mathrm{~m}$

- Suitable for frequency comb generation
- Anomalous dispersion required
- This will determine width/height

$$
\mathrm{n}_{\mathrm{SiGe}}=3.57
$$

Have a free spectral range (FSR) useful for sensing

$$
\mathrm{n}_{\mathrm{Si}}=3.42
$$ applications

$-\mathrm{R}=250 \mu \mathrm{~m}$ (FSR of 53 GHz)

- High Q
- Reduce bending loss, lower bound for $\mathrm{R}=250 \mu \mathrm{~m}$
- Aiming for critical coupling
- gap $=250 \mathrm{~nm}$ (smallest achievable gap in fabrication)
- Operating in TE polarization
- Pump wavelength $\lambda=4.18 \mu \mathrm{~m}$
- Single-mode
- Sufficiently large region with anomalous dispersion

- Operating in TE polarization
- Pump wavelength $\lambda=4.18 \mu \mathrm{~m}$
- Single-mode
- Sufficiently large region with anomalous dispersion

Dispersion for $\mathrm{w}=3.25 \mu \mathrm{~m}, \mathrm{~h}=3.3 \mu \mathrm{~m}$:

- $\mathrm{Si}_{0.6} \mathrm{Ge}_{0.4}$ waveguide (air-cladded) on Si substrate
- Deep UV photolithography
- 200mm CMOS pilot line at CEA-Leti

	Radius $(\mu \mathrm{m})$	Width $(\mu \mathrm{m})$	Gap $(\mathbf{n m})$
Range of parameters	$80,130,180,250$	$3.25,3.50,3.75$	$250,500,750,1000$
Featured value	250	3.25	250

Propagation loss:

- Loss measurement from spirals with different lengths (TE)
- $0.35 \mathrm{~dB} / \mathrm{cm}$ propagation loss for
$\mathrm{w}=3.25 \mu \mathrm{~m}$
- Estimated $\mathrm{Q}_{\text {int }}=680,000$
- Even $0.18 \mathrm{~dB} / \mathrm{cm}$ for $w=3.75 \mu \mathrm{~m}$, but difficult to couple

Propagation loss:

- Loss measurement from spirals with different lengths (TE)
- $0.35 \mathrm{~dB} / \mathrm{cm}$ propagation loss for $\mathrm{w}=3.25 \mu \mathrm{~m}$
- Estimated $\mathrm{Q}_{\mathrm{int}}=680,000$
- Even $0.18 \mathrm{~dB} / \mathrm{cm}$ for $w=3.75 \mu \mathrm{~m}$, but difficult to couple

Bending loss:

- Loss measurement from snake waveguides (TE)
- $\mathrm{R}=250 \mu \mathrm{~m}$ shows almost no difference to straight waveguide

Q-factor characterization

Q-Factor Measurement

First High-Q Ring on SiGe in the MIR

- Spectrum shows ring resonance and Fabry-Perot resonances from chip facets

Q-Factor Measurement

UNIVERSITY

First High-Q Ring on SiGe in the MIR

- Spectrum shows ring resonance and Fabry-Perot resonances from chip facets
- Fourier filtering to remove Fabry-Perot effect
- $\mathrm{FWHM}=23 \mathrm{pm}$ (corresponds to $\mathrm{Q}_{\text {tot }}=176,000$)

$$
\frac{1}{\mathrm{Q}_{\text {tot }}}=\frac{1}{\mathrm{Q}_{\text {coup }}}+\frac{1}{\mathrm{Q}_{\mathrm{int}}}
$$

Fano Resonance Analysis

First High-Q Ring on SiGe in the MIR

Fabry-Perot removed

- Resonance had Fano shape
- Fitting Fano function ${ }^{[1]}$:

$$
\sigma(E)=D^{2} \frac{(q+\Omega)^{2}}{1+\Omega^{2}} \quad \begin{aligned}
& \sigma-\text { spectrum } \\
& \mathrm{q}=\cot (\delta) \text { Fano parameter } \\
& \delta-\text { phase shift between coupled states } \\
& \mathrm{D}=4 \sin ^{2}(\delta) \\
& \Omega=2\left(\mathrm{E}-\mathrm{E}_{0}\right) / \Gamma
\end{aligned}
$$

Fano Resonance Analysis

First High-Q Ring on SiGe in the MIR

Fabry-Perot removed

- Resonance had Fano shape
- Fitting Fano function ${ }^{[1]}$:

$$
\sigma(E)=D^{2} \frac{(q+\Omega)^{2}}{1+\Omega^{2}} \quad \begin{aligned}
& \sigma-\text { spectrum } \\
& \mathrm{q}=\cot (\delta) \text { Fano parameter } \\
& \delta-\operatorname{phases} \text { shift between coupled states } \\
& \mathrm{D}=4 \sin ^{2}(\delta) \\
& \Omega=2\left(\mathrm{E}^{-}-\mathrm{E}_{0}\right) / \Gamma \\
& \\
& \\
& \Gamma-\text { resenance width } \\
& \\
& \mathrm{E}_{0}-\text { resonance energy }
\end{aligned}
$$

- $\Gamma=17.7 \mathrm{pm}\left(\mathrm{Q}_{\mathrm{tot}}=236,000\right)$

Fano Resonance Analysis

First High-Q Ring on SiGe in the MIR

Fabry-Perot removed

- Resonance had Fano shape
- Fitting Fano function ${ }^{[1]}$:

$$
\sigma(E)=D^{2} \frac{(q+\Omega)^{2}}{1+\Omega^{2}} \quad \begin{aligned}
& \sigma-\text { spectrum } \\
& \\
& \\
& \\
& \delta=\cot (\delta) \text { Fanase parameter shift between coupled states } \\
& \mathrm{D}=4 \sin ^{2}(\delta) \\
& \Omega=2\left(\mathrm{E}-\mathrm{E}_{0}\right) / \Gamma \\
& \\
& \\
& \Gamma-\text { resonance width } \\
& \\
& \mathrm{E}_{0}-\text { resonance energy }
\end{aligned}
$$

- $\Gamma=17.7 \mathrm{pm}\left(\mathrm{Q}_{\mathrm{tot}}=236,000\right)$
- Nature of Fano resonance not entirely clear

Using our Experimental Q-factor Results for the Rings

$$
\begin{array}{ll}
\text { Lugiato-Lefever equation } & \begin{array}{l}
\psi-\text { Intracavity field } \\
\text { F - External pump field intensity } \\
\theta-\text { azimuthal angle along circumference }
\end{array} \\
\frac{d \psi}{d t}=-(1+i \alpha) \psi+i|\psi|^{2} \psi-i \frac{\beta}{2} \frac{\partial^{2} \psi}{\partial \theta^{2}}+F \begin{array}{l}
\alpha-\text { frequency detuning } \\
\beta-\text { dispersion parameter } \\
\text { (Loss is included in } \alpha \text { and } \beta \text {) }
\end{array}
\end{array}
$$

Simulation taking into account ring parameters:

- $R=250 \mu \mathrm{~m}$
- $\mathrm{Q}=236,000$
- Waveguide nonlinear parameter $\gamma=0.63 \mathrm{~W}^{-1} \mathrm{~m}^{-1}$
- Threshold pump power $\mathrm{P}_{\mathrm{th}}=200 \mathrm{~mW}$
- Waveguide dispersion (simulated):

- First demonstration of an integrated high-Q ring resonator on SiGe in the MIR
- Loaded $\mathrm{Q}_{\text {tot }}=236,000$ at $\lambda=4.18 \mu \mathrm{~m}$ (intrinsic Q higher)
- Next batch will start fabrication soon (improved designs)
- Rings show great potential to be used for Kerr frequency comb generation very soon (now already promising for linear sensing applications)

- First demonstration of an integrated high-Q ring resonator on SiGe in the MIR
- Loaded $\mathrm{Q}_{\text {tot }}=236,000$ at $\lambda=4.18 \mu \mathrm{~m}$ (intrinsic Q higher)
- Next batch will start fabrication soon (improved designs)
- Rings show great potential to be used for Kerr frequency comb generation very soon (now already promising for linear sensing applications)

Thank you for your attention! Questions?

Fabry-Perot cavity from partially reflecting facets

Transmitted Power

time (=optical path difference of interferometer)

- Spectrum shows ring resonance and Fabry-Perot resonances from chip facets
- Ring resonance can be isolated

Q-Factor Measurement

Investigation of Other Parameters

- Investigation of different radii, gaps, widths:
- Q is decreasing if R goes below $250 \mu \mathrm{~m}$ due to increased bending loss
- Critical coupling likely not reached yet (no resonance observed for gap >250nm)
- Resonance depth weakens for increasing $w=3.25,3.50,3.75 \mu \mathrm{~m}$

Many Different Sensing Schemes

absorption lines

(b)

(c)

Rings as sensors through

- Shift in resonance
wavelength
- Shift of Q-factor

Threshold Power

Calculated for our scenario

$$
\begin{gather*}
P_{t h}(\text { resonance })=\frac{\pi n_{g}^{2} L A_{e f f}}{4 \lambda n_{2} Q_{i n}^{2}} \frac{(1+K)^{3}}{K} \\
P_{t h}=P_{t h}(\text { resonance })+\frac{n_{g}^{2} L A_{e f f}\left(\omega-\omega_{0}\right)^{2}}{2 n_{2} \omega c}\left(1+\frac{1}{K}\right) \tag{1}
\end{gather*}
$$

Used parameters:

- Wavelength $\lambda=4.18 \mu \mathrm{~m}$
- Ring radius $\mathrm{R}=250 \mu \mathrm{~m}$
- $Q=236,000$
- $Q_{\mathrm{in}}=1,600,000$
- Group index $n_{g}=3.67$
- Mode area $A_{e f f}=6.87 \mu \mathrm{~m}^{2}$
- $n_{2}=4 \times 10^{-14} \frac{\mathrm{~cm}^{2}}{\mathrm{~W}}$ (Optica paper)

[^0]
$4.18 \mu \mathrm{~m}$ Distributed Feedback (DFB) QCL

Part No: HHL-19-64

High Heat Load (HHL) Package

Features

- Pulse or CW operated lasers
- Thermo-electrically cooled. External heat sink still required.
- Sensitive to electrostatic discharge, must have standard ESD precautions during handling

Wavelength Tuning by Temperature

Wavelength Tuning by Current

Simulation of Straight Directional Coupler

 UNIVERSITY
Dependence on Coupling Gap

- Example for the following parameters: $\lambda=4 \mu \mathrm{~m}$, width $=3.5 \mu \mathrm{~m}$, height $3.3 \mu \mathrm{~m}$, $\mathrm{SiGe}-\mathrm{on}-\mathrm{Si}$
- Calculation performed in Lumerical
- $L_{C}=\frac{\lambda_{0}}{2 \Delta n_{e f f}}$ where $\Delta \mathrm{n}_{\text {eff }}$ is the difference between the two supermodes

Dependence on Waveguide Width

Example for the following parameters: $\lambda=4 \mu \mathrm{~m}$, height $=3.3 \mu \mathrm{~m}$, gap $=500 \mathrm{~nm}$, SiGe-on-Si
Calculation performed in Lumerical with the method from the previous slide
Conclusion: As expected intuitively, the coupling strength decreases with increasing waveguide with (the two mode centers are further apart and the evanescent field is weaker)

inl
 RMIT
 UNIVERSITY

Some Examples of Coupling Lengths of SiGe and Ge resonators from Literature

Optics Letters

Broadband integrated racetrack ring resonators

 for long-wave infrared photonics

photonis that opens the route towards miniaturized multi-
target molecule detection systems. $\odot 2019$ Opica Society of

$g=1 \mu \mathrm{~m}$
$L=200 \mu \mathrm{~m}$

Simulation Lumerical: $\mathrm{L}_{\mathrm{c}}=1800 \mu \mathrm{~m}$

| Research Article Vol | Vol. 8, No. 4 \| 1 Apr 2018 | OPTICAL MATERIALS EXPRESS 824 |
| :---: | :---: |
| Opitical Materials ExPRESS | |

Mid-infrared Vernier racetrack resonator tunable filter implemented on a germanium on SOI waveguide platform [Invited]
Sanja Radosavljevic,* Nuria Teigell Beneitez, Andrew Katumba, Muhammad Muneeb, Michael Vanslembrouck, Bart Kuyken, and Gunther Roelkens

Photonics Research Group, Ghent University - imec, Technologiepark 15, 9052 Ghent, Belgium Center for Nano- and Biophotonics, Technologiepark 15, 9052 Ghent, Belgium
*sanja._adosavjivic@usent.be

Abstract: Currently, most widely tunable lasers rely on an external diffraction grating to tune the laser wavelength. In this paper we present the realization of a chip-scale Vernier tunable racetrack resonator filter on the Ge-on-SOI waveguide platform that allows for wide tuning (108 nm free spectral range) in the 5μ m wavelength range without any moving parts. The fabricated racetrack resonators have a loaded Q-factor of 20000 , resulting in a side-peak suppression of more than 20 dB, which is more than sufficient for wavelength selection in an external cavity laser.

Optics Letters

Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared

Benedetto Trola, ${ }^{1}$ Jordi Soler Penades, ${ }^{2}$ All Z. Khokhar, ${ }^{2}$ Mllos Nedelokovc, ${ }^{2}$ Carlos Alonso-Ramos, ${ }^{3}$ Vittorio M. N. Passaro, ${ }^{1, *}$ and Goran Z. Mashanovic Department of Electrical and Intormation Engineering. Politechico odi Bar, Via E OTrabon 4,70125 Bari, laly

We present Vernier-effect photonic microcavities based on a germanium-on-silicon technology platform, operating around the mid-infrared wavelength of $3.8 \mu \mathrm{~m}$. Cascaded
racetrack resonators have been designed to operate in the second regime of the Vernier effect, and typical Vernier comb-like spectra have been successfully demonstrated with nsertion losses of $\sim 5 \mathrm{~dB}$, maximum extinction ratios of $\sim 23 \mathrm{~dB}$, and loaded quality factors higher than 5000 . withermore, an add-drop racetrack resonator designed
 for a Vernier device has been characterized, exhibiting aver-
age insertion losses of 1 dB , extinction ratios of up to 18 dB , age insertion losses of 1 dB , extinction ratios of up to 18 dB , and a quality factor of $\sim \mathbf{1 7 0 0}$. © 2016 Optical Society of America

	Vernier \#A			Vernier \#B	
Parameters	RR \#A1	RR \#A2		RR \#B1	RR \#B2
$L(\mu \mathrm{~m})$	439.60	449.60		1039.30	1079.10
$R(\mu \mathrm{~m})$	59	59		142	149
$L_{i}(\mu \mathrm{~m})$	34.44	39.44		73.54	71.45
$g_{0}(\mathrm{~nm})$	450	450		650	650

Simulation Lumerical: $\mathrm{L}_{\mathrm{c}, \mathrm{TE}}=562 \mu \mathrm{~m}, \mathrm{~L}_{\mathrm{c}, \mathrm{TM}}=520 \mu \mathrm{~m}$ Conclusion: The typical coupling lengths in literature for comparable platforms are lower than ours. But this likely comes from some differences, like gap underetching. So this is something we can also try if we want to increase the coupling

December 12,

2022 UNIVERSITY

Example for the following parameters: width $=3.5 \mu \mathrm{~m}$, gap $=500 \mathrm{~nm}, \mathrm{SiGe}-\mathrm{on}-\mathrm{Si}$
Calculation performed in Lumerical
Conclusion: Underetching will move us to all-normal dispersion at some point. Overetching has the opposite effect, the anomalous dispersion gets stronger.

And hence narrowing down the resonance wavelength

- transmission

time (=optical path difference of FTIR)
\rightarrow We know how much one period in time is in terms of wavelength, so we also know the width of the resonances
\rightarrow We are sure that these are resonances from the chip, because if we heat the chip the resonances move
$\rightarrow Q=90000$ for this ring

To try to understand the jump in our ring resonator measurements

Sharp asymmetric line shapes in side-coupled waveguide-cavity systems Shanhui Fan ${ }^{\text {a) }}$
Departtuent of Electrical Engineering, Stanford University, Stanford, Califorria 94305
(Received 1 October 2001; accepted for publication 29 November 2001)
We show that, for an optical microcavity side coupled with a waveguide, sharp, and asymmetric line shapes can be created in the response function by placing two partially reflecting elements into the waveguides. In such a system, the transmission coefficient varies from 0% to 100% in a frequency range narrower than the full width of the resonance itself. We numerically demonstrate this effect by simulating the propagation of electromagnetic waves in a photonic crystal. © 2002 American Institute of Physics. [DOI: 10.1063/1.1448174]

$$
t_{S}=\frac{\left(r^{2}-1\right) e^{2 i \delta}\left(\omega-\omega_{0}\right)}{-e^{4 i \delta} r^{2}\left(\omega-\omega_{0}-i \gamma\right)-2 e^{2 i \delta}(i \gamma) r+\omega-\omega_{0}+i \gamma}
$$

t_{s} - amplitude transmissivity
r-amplitude reflectivity at waveguide facet
$\delta-\omega l / c$ phase shift aquired by waveguide mode (l - half length of Fabry-Perot cavity)
ω_{0} - resonance frequency
γ - width of resonance

- "The shapes of the resonant features depend critically on the relative positions of the resonant frequency in relation to the background."
- But no parameter combination seems to lead to a jump
- Can maybe still be useful to estimate resonance visibility

More general, not in the limit of a narrow ring resonance

Highly sensitive silicon microring sensor with sharp asymmetrical resonance

Huaxiang Yi, ${ }^{1}$ D. S. Citrin, ${ }^{2}$
and Zhiping Zhou ${ }^{1,2 \%}$
${ }^{\text {'State Key Laboratory on Advanced Optical Communication Systems and Networks, Peking University, Beijing, }}$
${ }^{2}$ School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, 30318, USA and UMI 2958 Georgia Tech-CNRS, Georgia Tech Lorraine, 2-3 Rue Marconi, 57070 Metz, France *zjzhou@pku.edu.cn
\#120508 - \$15.00 USD Received 30 Nov 2009; revised 7 Jan 2010; accepted 21 Jan 2010; published 27 Jan 2010 (C) 2010 OSA

1 February 2010 / Vol. 18, No. 3 / OPTICS EXPRESS 2967

$$
\begin{aligned}
T=T_{F P}\left[\begin{array}{cc}
e^{i \varphi} & 0 \\
0 & e^{-i \varphi}
\end{array}\right] T_{r}\left[\begin{array}{cc}
e^{i \varphi} & 0 \\
0 & e^{-i \varphi}
\end{array}\right] T_{F P}, & T_{r}
\end{aligned}=\left[\begin{array}{cc}
1-\frac{i W}{\omega-\omega_{0}} & \frac{-i W}{\omega-\omega_{0}} \\
\frac{i W}{\omega-\omega_{0}} & 1+\frac{i W}{\omega-\omega_{0}}
\end{array}\right], ~ \begin{array}{rr}
T_{F P} & =\frac{1}{i \sqrt{1-r^{2}}}\left[\begin{array}{cc}
-1 & -r \\
r & 1
\end{array}\right]
\end{array}
$$

T - transfer matrix
r - amplitude reflectivity at waveguide facet
$\varphi=\omega / / 2 c$ phase shift aquired by waveguide mode (l - length of Fabry-Perot cavity)
ω_{0} - resonance frequency
W - width of resonance (HWHM)

Does not reproduce the asymmetry either

Through supercontinuum generation

Mid-infrared octave spanning supercontinuum generation to $\mathbf{8 . 5} \mu \mathrm{m}$ in silicon-germanium waveguides
Milan Sinobad, ${ }^{12,7}$ © Christelle Mona, ${ }^{1}$ Barary Luthee-davies, ${ }^{3}$ Pan Ma, ${ }^{3}$ Stephen Madden, ${ }^{3}$ David J. Moss, ${ }^{4}$ Arnan Mitchell, ${ }^{2}$ David Alloux, ${ }^{1}$ Regis Orobtchouk, ${ }^{1}$ ' ${ }^{5}$ alim Boutam, ${ }^{5}$ Jean-Michel Hartmann, ${ }^{5}$ Jean-Marc Fedel, ${ }^{5}$ and Christian Grilet ${ }^{1,6}$

Fig. 5. On-chip SC power versus coupled average power measured for the 7 cm long waveguide (1) in TE at $4.0 \mu \mathrm{~m}$ (blue squares), simulated results for the 7 cm waveguide (blue line) and simulated results for a 2 cm long similar waveguide (red line).

Fit gives $\gamma=0.63 \mathrm{~W}^{-1} \mathrm{~m}^{-1}$

Lugiato-Lefever equation

$$
\frac{d \psi}{d t}=-(1+i \alpha) \psi+i|\psi|^{2} \psi-i \frac{\beta}{2} \frac{\partial^{2} \psi}{\partial \theta^{2}}+F
$$

Cavity
field

Spectrum

Turing rolls

Chaos

Soliton

Rings for filters:

Mid-infrared Vernier racetrack resonator tunable filter implemented on a germanium on SOI waveguide platform [Invited]
Sanja Radosavljevic,* Nuria Teigell Beneitez, Andrew Katumba, Muhammad Muneeb, Michael Vanslembrouck, Bart Kuyken, and Gunther Roelkens
Photonics Research Group, Ghent University - imec, Technologiepark 15, 9052 Ghent, Belgium Center for Nano- and Biophotonics, Technologiepark 15, 9052 Ghent, Belgium ${ }^{\text {Center for Nano- and Bioph }}$

[^0]: [1] P.-S.Wang et al.,Sci Rep 11.1 (2021): 1-10

