ColUSM #150

4 March 2022

Mario Deile
New PPS Studies since EoI

Next project step: TDRs (first volume due for this summer)

Present main activities:

1. Design studies for new Roman Pot vessels and detectors:
 • detector dimensions from predicted hit maps (vertical crossing with 2 possible polarities)
 • segmentation for tracking and timing detectors (from occupancy)
 • remote-controlled shifting of detectors inside the pot to distribute peaked irradiation
 Not the topic of this meeting

2. Update of performance studies
 • Optics 1.3 (EoI) → 1.5
 Noticed changes less in the optics, but in the layout (aperture!)

 • Chamonix 2022: new running scenario:
 - lumi levelling trajectory during fill has changed
 - TCT collimator settings have changed
 → acceptances to be recalculated for new ($\alpha/2$, β^*) points and new XRP distances

Here: some comments and questions on (2), triggered by a recent email exchange.
New HL-LHC Running Scenario

Basis:
- R. Tomas @ Chamonix 2022
- Draft note: “HL-LHC Run 4 proton operational scenario” (25 Jan. 2022)

Recalculation of performance: no drastic change relative to EoI!

<table>
<thead>
<tr>
<th>Year</th>
<th>ppb $[10^{11}]$</th>
<th>Virtual lumi. $[10^{34}\text{cm}^{-2}\text{s}^{-1}]$</th>
<th>Days in physics</th>
<th>θ [\mu rad]</th>
<th>β_{start} [cm]</th>
<th>β_{end} [cm]</th>
<th>CC</th>
<th>Max. PU</th>
</tr>
</thead>
<tbody>
<tr>
<td>2029</td>
<td>1.8</td>
<td>4.4</td>
<td>90</td>
<td>380</td>
<td>70</td>
<td>30</td>
<td>exp 116</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>2.2</td>
<td>9.7</td>
<td>120</td>
<td>500</td>
<td>100</td>
<td>30</td>
<td>on 132</td>
<td></td>
</tr>
<tr>
<td>2031</td>
<td>2.2</td>
<td>11.3</td>
<td>160</td>
<td>500</td>
<td>100</td>
<td>25</td>
<td>on 132</td>
<td></td>
</tr>
<tr>
<td>2032</td>
<td>2.2</td>
<td>13.5</td>
<td>160</td>
<td>500</td>
<td>100</td>
<td>20</td>
<td>on 132</td>
<td></td>
</tr>
<tr>
<td>2033-34</td>
<td>Long shutdown 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td>2.2</td>
<td>13.5</td>
<td>140</td>
<td>500</td>
<td>100</td>
<td>20</td>
<td>on 132</td>
<td></td>
</tr>
<tr>
<td>2036</td>
<td>2.2</td>
<td>16.9</td>
<td>170</td>
<td>500</td>
<td>100</td>
<td>15</td>
<td>on 132</td>
<td></td>
</tr>
<tr>
<td>2036</td>
<td>2.2</td>
<td>16.9</td>
<td>200</td>
<td>500</td>
<td>100</td>
<td>15</td>
<td>on 200</td>
<td></td>
</tr>
</tbody>
</table>

Old TCT settings:
$$d_{\text{TCT}} = 12.9 \sigma(\beta^* = 15\text{cm}) = 16.1 \text{ mm}$$
(constant position during the fill)

New TCT settings:
$$d_{\text{TCT}} = 13.2 \sigma(\beta^* = 20\text{cm}) = 14.3 \text{ mm}$$
(constant position during the fill)

TCL settings stayed unchanged in absolute distance.

Fast phase to ~55 cm
• Are numerical data available for this graph?
• There seems to be a fast phase from 1 m to ~55 cm. Is there anything “magic” about this transition point of 55 cm? Normal squeeze to telescope?
• How does the trajectory look like in the first year? Start at 70 cm → transition to slow phase also at 55 cm?

We studied:
\(\beta^* = 15, 20 \text{ cm} \) (“round” optics directory)
\(\beta^* = 50, 64, 85, 100 \text{ cm} \) (“ramp” optics directory)
\(\rightarrow \) confirmed that from 15 to 50 cm the transport matrix is constant, but not from 50 to 100 cm

Knowledge of transport functions at all \(\beta^* \) is crucial. Constant functions are advantageous but not mandatory if reliable parametrisation is available.
Variation of Transport Functions

Forward physics notation:

\[v_x = T_{11} \quad L_x = T_{12} \]
\[v_y = T_{33} \quad L_y = T_{34} \]

Seeing non-monotonic evolution was bad news.
Any simple rules, or do we need all magnet currents to predict this?
We have optics reconstruction knowledge in the group, but only for \(\beta^* \) points where calibration data are available \(\rightarrow \) interpolation would be useful.
Some Answers to Your Questions

- Preference for smaller or larger crossing-angle?
- Preference for smaller or larger dispersion?

Vertical crossing-angle \(\propto \) vertical dispersion:
Argument from detector coverage:

Detectors will be designed to cover up to (+ or -) 250 \(\mu \)rad (polarity change assumed only in YETS)
\(\Rightarrow \) smaller \(\alpha/2 \) and \(D_y \) are ok,
larger ones not (protons out of acceptance)

Horizontal dispersion:
Larger \(D_x \) always welcome (gives acceptance for small masses), but not a formal request.
For Info: XRP Distance vs. β^*

Optics V. 1.5

Note: 2 TCTs at HL-LHC (incoming beam): TCT-4 (cell 4) and TCT-6 (cell 6), respect hierarchy to the most stringent one (here TCT-4).

In general: XRP-to-beam distances greater (i.e. less aggressive) than in Runs 2 – 3, except for XRP-234!