Update on Snowmass Benchmarks for Semi-Visible Jets

Matt Strassler Suchita Kulkarni Seán Mee

24/2/22

Introduction

Goal: create benchmarks for semi-visible jets

- Assure experimental coverage, provide diversity of targets
- Focus: s-channel production of a confining hidden valley (HV) dark sector
 - Theoretically consistent and experimentally relevant
 - A range of r_{inv} and diversity of substructure
- Constraints: able to simulate using validated Pythia 8 HV module
 - Advances in Pythia 8 have been achieved, see below

Note: Same issues important for t-channel production

Notation: will not put "D" or "v" indices on hidden hadrons;

• all hadrons in this talk are dark sector/hidden valley hadrons.

One Hidden Valley Sector (QCD-like)

Dark Sector consists of

- SU(N) gauge theory with F quarks q^v_r of equal (current) mass m_q
 - Use m_{π} rather than m_q as parameter
- "Confinement scale"
 - $SU(F)_L \times SU(F)_R \times U(1)_B \rightarrow SU(F)_D \times U(1)_B$ spontaneous breaking
 - $U(1)_A$ broken explicitly by anomaly
- Spin-0 bosons
 - F²-1 flavor-adjoint pseudo-Nambu-Goldstones π , mass m_{π}
 - 1 flavor singlet scalar η' with mass $m_{\eta'}$ determined by m_{π} and anomaly
- Spin-1 bosons
 - F²-1 flavor-adjoint ρ , mass m_{ρ} (determined by $m_{\pi},\Lambda)$
 - 1 flavor singlet vector ϕ with mass m_{ϕ}
- Baryons (available only for N=3 in simulations, small effect N>3)
- Other hadrons (neglected in simulations)

One Class of Couplings (Z')

Dark Sector consists of

- SU(N) gauge theory with F quarks q^v_r of equal (current) mass m_q
 - Use m_{π} rather than m_{q} as parameter
- "Confinement scale"

Coupled to SM by leptophobic Z'

- To evade Z' constraints
- To assure all-hadronic final state [otherwise different expt strategy.]
- U(1)' charge Q_f of quark q_f^v , f = 1,...,F

The FxF matrix $Q = diag(Q_1, Q_2, ..., Q_F)$ controls all decays to SM

- Ex.: If **Q**=diag(1,-1, 2,-2) then **3** diagonal mesons → SM
- Ex. If **Q**= diag(1,-1, 1,-1) then **only 1 diagonal meson →** SM
- Ex.: If **Q**=diag(1, 1, 1, 1) then *only flavor-singlet* meson → SM

• New version of Pythia 8 HV module can handle this

Update (beta) to Pythia 8

separateFlav=off

- Works as before (except for adjustment to soft π emission)
- Treats spin-0/1 diagonal/off-diagonal as four particle categories
 - Each category has one set of decay modes, lifetimes

See cautions for usage in prior presentations!

separateFlav=on

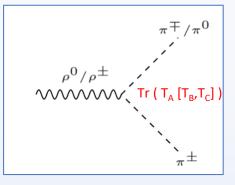
- All F² spin-0 mesons π_{rs} and F² spin-1 mesons ρ_{rs} are now independent
 - Each can have its own mass, decay modes
 - Decay modes can vary, so accommodates many choices of Q matrix
 - · We have only validated case with masses equal

• Updates to singlets, baryons later in the talk

 $m_{\pi} < \frac{1}{2} m_{0}$

In this case $Br(\rho \rightarrow \pi \pi) = 100\%$ (SM never competes)

- $r_{inv} = 1$ unless some π 's can decay
- Depending on \mathbf{Q} , some diag π 's may decay
 - (via offshell Z') to heavy SM q q (as in SM $\pi \rightarrow ev$)
- All off-diagonal π are stable (unless additional flavor-violating physics)


$$r_{inv} = 1 - r_{vis} \ge 1 - F / (F^2) = 1 - \frac{1}{F}$$

Substructure variables will depend on m_{π}/m_{ρ} .

Does this impact efficiencies for SVJ identification?

Can r_{inv} be further reduced?

- Still under investigation but seems likely
 - Example: add an invisible axion a that allows $\pi_{12} \rightarrow a + q q$

Benchmark Models ($m_{\pi} < \frac{1}{2} m_{\rho}$)

separateFlav=off

- Diag/off-diag ρ 's decay to diag/off-diagonal π 's
- Diagonal π assigned a decay to qq
- Off-diagonal π stable

Benchmarks are currently available

separateFlav=on

- ρ decays need to be kept proper track of (long decay table)
- Allows for **Q**-dependent details of diag π decay
- May be needed for certain flavor-changing decays of off-diag π 's

 $\rho_A \rightarrow \pi_B \pi_C$ proportional to [Tr (T_A [T_B,T_C])]²

 T_A the generator matrices ρ_{fg} = ρ_A $(T_A)_{fg}$

Benchmarks under development

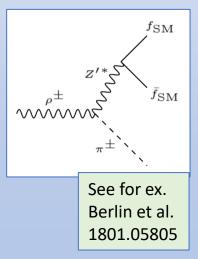
(long decay tables must be written, checked) (possibly overkill for Snowmass but will be needed later)

 $m_{\pi} > \frac{1}{2} m_{\rho}$

In this case $\rho \rightarrow \pi \pi$ is kinematically impossible

- All π 's, ρ 's decay to SM or are stable
 - All off-diag π stable
 - (Assuming no other source of SU(F) breaking)
 - All diagonal π may be set LHC-stable (late decay via two offshell Z' to q q q q)
 - All diagonal ρ decay (via offshell) Z' to q q
 - All off-diagonal p are stable (?)

$$r_{inv} = 1 - r_{vis} = 1 - F / (F^2 + F^2) = 1 - \frac{1}{2F}$$


 $m_{\pi} > \frac{1}{2} m_{o}$

In this case $\rho \rightarrow \pi \pi$ is kinematically impossible

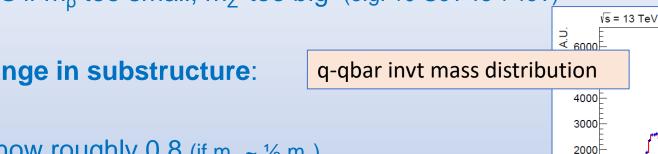
- All π 's, ρ 's decay to SM or are stable
 - All off-diag π stable
 - (Assuming no other source of SU(F) breaking)
 - All diagonal π may be set LHC-stable (late decay via two offshell Z' to q q q q)
 - All diagonal ρ decay (via offshell) Z' to q q
 - All off-diagonal ρ are stable Off-diag ρ may decay via anomaly

• $\rho_{fg} \rightarrow \pi_{fg} + q q$

$$r_{inv} = 1 - r_{vis} = 20.8 (if m_{\pi} 2 \frac{1}{2} m_{\rho})$$

 r_{inv} must be calculated by simulation

In this case $\rho \rightarrow \pi \pi$ is kinematically impossible


- All diagonal ρ decay (via offshell) Z' to q q
- Off-diag ρ may decay via anomaly
 - $\rho_{fg} \rightarrow \pi_{fg} + q q$
- LLPs if m_o too small, m_Z, too big (e.g. 10 GeV vs 1 TeV)
- Change in substructure:
- \mathbf{r}_{inv} now roughly 0.8 (if $m_{\pi} \sim \frac{1}{2} m_{\rho}$)

• **Cannot avoid:** decays will occur for **some** off-diag ρ_{rs} for any F>2.

- If $\mathbf{Q} = \operatorname{diag}(\mathbf{Q}_1, \mathbf{Q}_2, \dots, \mathbf{Q}_F)$ is generic (no $|\mathbf{Q}_r| = |\mathbf{Q}_s|$) then all decay
- For F>2, non-generic **Q**, some states may be stable

45 M_{on} [GeV]

 $f_{\rm SM}$ See for ex. Berlin et al. 1801.05805

Examples in backup

15 20 25

30 35

1000

Benchmark Models ($m_{\pi} > \frac{1}{2} m_{\rho}$)

separateFlav=off

- Set all π's stable
- Set diagonal $\rho \rightarrow qq$
- Set off-diagonal $\rho \rightarrow (qq + off-diag \pi)$ or invisible
 - Such as to obtain the correct fraction of off-diagonal $\rho\sp{'s}$ that are stable

Benchmarks are newly available

separateFlav=on

Can be explicit about pattern of stable/unstable diag/off-diag p

 $\rho_A \rightarrow \pi_B (Z')^*$ prop to [Tr ($T_A \{T_B, Q\}$)]²

 T_A the generator matrices $\rho_{fg} = \rho_A (T_A)_{fg}$

Benchmarks under development (long decay tables must be written, checked)

Benchmark Models So Far

• Table of Parameters

separateFlav=off

Regime	N _c , N _f	Λ [GeV]	Q	m _π [GeV]	m _p [GeV]	Stable dark hadrons	Dark hadron decays	
$m_{\pi}^{} > 1/2 m_{\rho}^{}$	3,4	10	(-1,2,3,-4)	17	31.77	All π	$\begin{array}{c} \rho^{0} \rightarrow q \; \bar{q} \\ \rho^{\pm} \rightarrow \pi^{0} q \; \bar{q} \end{array}$	probVec = 0.58
$m_{_{ m T}} < 1/2 m_{_{ m p}}$	3,3	5	Various	3	12.55	0/1/2 π ⁰	$\begin{array}{c} \rho^{0/\pm} \rightarrow \pi^{\pm/0} \pi^{\mp} \\ \pi^{0} \rightarrow c\bar{c} \end{array}$	
	3,3	10	Various	6	26	0/1/2 π ⁰	$\begin{array}{c} \rho^{0/\pm} \rightarrow \pi^{\pm/0} \ \pi^{\mp} \\ \pi^{0} \rightarrow c \bar{c} \end{array}$	probVec = 0.5
	3,3	50	Various	30	125.5	0/1/2 π ⁰	$ \begin{array}{c} \rho^{0/\pm} \rightarrow \pi^{\pm/0} \pi^{\mp} \\ \pi^{0} \rightarrow c \bar{c} \end{array} $	

Various **Q** will stabilize different # of diag π:

Ex: (1,1,-2) gives 2 stable, 1 not Different **Q** will also have different Z' branching fractions, not treated correctly with separateFlav=off, but small effect

Not Covered (see backup)

- separateFlav=on has been validated, ran out of time for benchmarks
 - Degenerate masses: needed for singlets, for some decay patterns, LLPs
 - Non-degenerate masses
- Flavor-singlets (need separateFlav=on)
 - Especially spin-0
- Baryons (N=3 only, not used yet)
- Hadronization studies needed
 - Lund string parameters
 - probVec, probKeepEta1, probDiquark

Backup Slides

separateFlav=on

Degenerate masses – sometimes hard to mock up with separateFlav=off

- e.g. if a new particle can affect both ρ and π decays in a flavor-dependent way

Cannot treat flavor singlets without it; especially important for small F

Essential for LLP searches

• multiple LLP's with different lifetimes

Essential for non-degenerate masses

- cascade decays
- different masses

Hadronization studies needed

probVec parameter (probability that fragmented hadron is spin-1)

- Theory/data suggest 0.75 for m_{π} ~ $m_{\rho},$ 0.5 in QCD
- We take 0.58 in $m_{\pi} > \frac{1}{2} m_{\rho}$ benchmarks, 0.5 in $m_{\pi} < \frac{1}{2} m_{\rho}$ benchmarks
- Should be varied

Standard Lund-model hadronization parameters

- · For now we take the defaults
- Further discussion & studies are needed to investigate the unknowns and unknowables
- Also, what parameter should they scale with? Currently easy to set them wrong.

probKeepEta1 parameter (for separateFlav=on) not much studied yet

• See below

Baryons: off for now

Treatment of singlet states

Singlet phi will have similar mass to other spin-one states (as in QCD) Singlet eta' heavier than other spin-zero states unless N>>F.

But singlets have

- Different quantum numbers
- Different decay modes
- Different lifetimes
- Details depend on **Q** and on spectrum.
 - Often singlet-adjoint mixing makes the states more similar
 - But this is not always the case.
- Sometimes they can provide a separate signal.

More theory work needs to be done here.

Treatment of singlet spin-0 η'

This state is heavier than the spin-0 mesons because of the anomalyOur QCD analysis gives

$$(m_{n'})^2 \sim m_{\pi}^2 + F/_N (3 \Lambda)^2$$

though the coefficient of Λ depends on how it is defined, needs more theory work

Pythia 8

- Define singlet pseudoscalar to be the hadron π_{FF} .
 - Could be issues with diag hadron flavor mixing, needs consideration in some models.
- Use parameter probKeepEtal to suppress production in hadronization
- If heavy and suppressed (i.e. F ~ N or greater) then for $m_{\pi} < \frac{1}{2} m_{\rho}$

 $r_{inv} = 1 - \frac{1}{F} \rightarrow 1 - \frac{1}{F+1}$

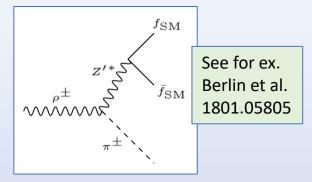
Baryons

- Huge effect for N=2, Pythia cannot currently simulate it
 - F² mesons are degenerate with 2F(F-1) baryons and antibaryons
 - Form a larger multiplet of SU(2F)
- 10% effect for N=3; new version of Pythia can simulate
 - Increases effective r_{inv} by 10%?
 - Implementation in Pythia still crude; not validated
- Very limited effect for N>3
 - Baryons simply too heavy

How **Q** Affects ρ Decays

Diag state must have Tr(T^a Q) nonzero to decay to SM

 ρ_{rs} state's d^{abc} coeffs all vanish if Q_r+Q_s=0


• **Q** = (-2,-1,1,-2)

- ρ_{14} , ρ_{23} stable, others decay

- $\mathbf{Q} = (-1, -1, 1, 1)$
 - Any ρ_{rs} with $\ r=1,2,\ s=3,4$ is stable
 - Two diag ρ decay via 3-body because of preserved SU(2)xSU(2)

• **Q** = (-1,-3,2,2)

- All off-diag can decay
- One diag ρ decay via 3-body because of preserved SU(2)

Future Beyond Snowmass

Within Reach:

- Non-degenerate quarks (all with $m < or \sim \Lambda$)
- More study of flavor-changing interactions
- t-channel (need to introduce SM flavor physics constraints?)
- Scalar s-channel
- Herwig/Sherpa engagement?

Pipe Dream

- F=1 (need wider range of mesons)
- N=2 (need baryons degenerate with mesons)
- Both light and heavy hidden quarks (affects hadronization, spectrum)
- F=0 (pure-glue hadronization models) or all quarks heavy
- Sp(N), SO(N)
- Better theory of hadronization in new regimes (e.g. chiral limit)