Welcome to CERN

Maarten Litmaath
CERN IT

November 24, 2022

Based on material graciously provided by
Prof Dr Freya Blekman
DESY and University of Hamburg

What is CERN about?

- CERN
 - Original meaning: Conseil Européen pour la Recherche Nucléaire
 - Current meaning: European Organization for Nuclear Research
- Quick summary of its main goals
 - C → collaboration
 - E → education

 - N → new technologies

Important dates

- 1949: first steps towards civilian research in nuclear technology
- 1952: foundation of CERN under auspices of UNESCO
- 1953: Signing of the CERN charter
- 1954: Completion of the ratification by the 12 founding states

Finances & member states

Contributions from Member States in 2019
Annual budget: 1.17 billion CHF

Austria	2.1%	Netherlands	4.5%
Belgium	2.7%	Norway	2.5%
Bulgaria	0.3%	Poland	2.8%
Czech Republic	0.9%	Portugal	1.1%
Denmark	1.8%	Romania	1.0%
Finland	1.3%	Serbia	0.2%
France	14.0%	Slovakia	0.5%
Germany	20.6%	Spain	7.1%
Greece	1.0%	Sweden	2.7%
Hungary	0.6%	Switzerland	4.1%
Israel	1.7%	United Kingdom	16.1%
Italy	10.4%		

Associate Member States (~25 MCHF)
India, Lithuania, Pakistan, Turkey, Ukraine
Cyprus, Slovenia

Who works at CERN?

- ~3000 people employed by CERN
 - Physicists, engineers, computer scientists, mathematicians, technicians, secretaries, fire brigade, health & safety experts, security, etc
- >10000 physicists associated with CERN
 - From all over the world!

Distribution of All CERN Users by Nationality on 27 January 2020

MEMBER STATES

7	1	49

	<i>1</i> 149
Austria	95
Belgium	113
Bulgaria	71
Czech Republic	216
Denmark	52
Finland	72
France	778
Germany	1 177
Greece	216
Hungary	77
Israel	59
Italy	1 856
Netherlands	170
Norway	59
Poland	311
Portugal	94
Romania	144
Serbia	49
Slovakia	128
Spain	405
Sweden	74
Switzerland	204
United Kingdom	729

ASSOCIATE MEMBERS IN THE PRE-STAGE TO MEMBERSHIP

21 33 Cyprus Slovenia

ASSOCIATE MEMBERS	770
Croatia	47
India	367
Lithuania	31
Pakistan	63
Turkey	162
Ukraine	100

		Bolivia	2	Egypt	26	Ireland	14	Montenegro	8	Saint Kitts		Uzbekistan	3
OTHERS		Bosnia & Herze	egovina 2	El Salvador	1	Jamaica	1	Morocco	26	and Nevis	1	Venezuela	10
		Bostwana	1	Estonia	16	Jordan	2	Myanmar	1	Saudi Arabia	2	Viet Nam	10
Albania	4	Brazil	121	Georgia	54	Kazakhstan	12	Nepal	8	Senegal	1	Yemen	1
Algeria	8	Burundi	1	Ghana	1	Kenya	1	New Zealand	6	Singapore	4	Zambia	1
Argentina	22	Canada	155	Gibraltar	1	Korea	161	Nigeria	2	South Africa	54	Zimbabwe	1
Armenia	18	Chile	21	Guatemala	1	Kyrgyzstan	1	North Korea	3	Sri Lanka	6		
Australia	28	China	569	Hong Kong	1	Latvia	4	North Macedonia	2	Sudan	2		
Azerbaijan	7	Colombia	35	Honduras	1	Lebanon	23	Oman	1	Syria	2		
Bahrain	3	Congo	1	Iceland	5	Luxembourg	3	Palestine	7	Taiwan	47		
Bangladesh	5	Costa Rica	1	Indonesia	11	Malaysia	19	Paraguay	1	Thailand	24		
Belarus	49	Cuba	16	Iran	46	Malta	5	Peru	6	Tunisia	5	4	000
Benin	1	Ecuador	11	Iraq	1	Mexico	80	Philippines	4	Uruguay	1		822

Who visits CERN

- CERN is an open laboratory
 - With certain constraints and regulations

Every year, ~130'000 people visit CERN

• Open days September 2019: 75'000 people visited in 2 days!!!

Basic vs applied research

- Two types of science research
 - Basic research (how do things work)
 - Applied research (how do I make...)
- Applied research often builds on basic research

- CERN only does basic research
 - But we often need to innovate to build things that do not exist yet...

For example, the World Wide Web!

Tim Berners-Lee

But also...

Medical applications

- PET / CT / MRI scan technologies
 - Detectors, superconducting magnets, cryogenics, vacuum
- Radiation therapy: accelerators, detectors

Space applications

- High-radiation environment materials / devices
- Other computing developments
 - Data analysis & simulation frameworks
 - Grid middleware
 - Indico meeting and conference management!
 - Invenio, Zenodo digital library management

And more

CERN against COVID-19

Reuse CERN techniques and technologies to help the global battle against the COVID-19 pandemic:

- Low-cost ventilators for breathing devices
- Zenodo space for fast and easy publication of research data sets and results
- Using part of <u>WLCG</u> for Folding@Home
- •

Basic Questions

- What is everything around us made of?
- How does matter stick together?
- What, really, is mass?
 - And does the Higgs particle indeed play a role in the creation of mass?
- Are there really only 3 spatial dimensions?
- Are the smallest particles we know fundamental?
- Where did the anti-matter go?
- Where's the rest of the matter anyway?

What is everything around us made of?

At different scales...

Mainly O, C, H

Mainly Fe, O, Si

Mainly H and He

96% out there unknown!

What is everything around us made of?

Anti-matter

- Anti-matter: discovered in 1923
 - Predicted by theory
- Almost same as matter...
 But oppositely charged + some subtle effects...
- Problem: at the Big Bang there would have been just as much antimatter as matter... Where did all that anti-matter go?

The four fundamental forces

The standard model before July 4, 2012

How do we know all this?

Cosmic rays

- Accelerator experiments
- Radioactivity experiments

And about 100 years of hard work by many people...

The Large Hadron Collider

Huge experiments can investigate extremely small scales ...

... by identifying what is produced in collisions!

Different detector layers help distinguish particle types

Computing challenges

- The LHC experiments generate
 > 100 Petabytes per year
- To store and process such huge quantities of data, the experiments make use of a worldwide collaboration of partner universities and laboratories: the Worldwide LHC Computing Grid

More open questions

- Are the quarks and leptons elementary particles?
- Are there other particles we have not seen yet?
- Why are the masses different?
- Matter/Antimatter asymmetry in universe?
- What about gravity? Or superstrings? Or extra dimensions?
- Properties of the neutrino?

Solving any of these puzzles is worth a Nobel Prize!

Other accelerators and many more experiments

Even in space!

Summary

- CERN is about:
 - International collaboration
 - Fundamental research
 - Technology innovation
 - Knowledge sharing

 CERN has particle accelerators and many experiments to discover and study the building blocks of the universe

Enjoy your stay at CERN!