

DIPARTIMENTO DI SCIENZE DI BASE e Applicate per l'Ingegneria

Previous work on FCC-ee Booster collective effects

M. Migliorati

E. Carideo, D. Quartullo, M. Zobov

Parameter list comparison: Z-pole and booster (injection)

parameter	Z	Booster	
Beam energy (GeV)	45.6	20	
Bunch population [10 ¹¹]	1.7	.213	
Energy spread(SR/BS) [10 ⁻³]	0.38/1.32	.166	
Energy loss/turn (MeV)	36.0	1.33	
RF frequency (MHz)	400	400	
RF voltage (MV)	100	60	
Arc optics		60° ph adv	90° ph adv
Mom compaction [10 ⁻⁶]	14.8	14.8	7.27
Synchrotron tune	0.025	0.030	0.021
Bunch length [mm](SR/BS)	3.5/12.1	1.26	0.88

RW impedance in the Booster

- The main source of impedance for FCC-ee is the RW due to a copper beam pipe of 35 mm of radius
- For the booster the beam pipe is 25 mm and it is made of stainless steel
- The resistivity of stainless steel is 40 times larger than that of copper at room temperature.
- The longitudinal impedance is proportional to r^{-1} , and the transverse one to $r^{-3} \rightarrow$ for the booster we have a larger factor of 1.4 and 2.7 respectively.

FCC-ee booster

FCCee-Booster Beam Dynamics Studies

No tracking code simulations had been performed in the transverse plane for TMCI

N_b [10¹⁰ ppb]

N_b [10¹⁰ ppb]

RW Transverse coupled bunch instability 60° optics

For the booster, the peak of the impedance at low frequency is similar to that of the Z-pole, even in presence of stainless steel. However, a variation of the fractional part of the tune here affects only slightly the growth rate. The rise time is in the order of few turns.