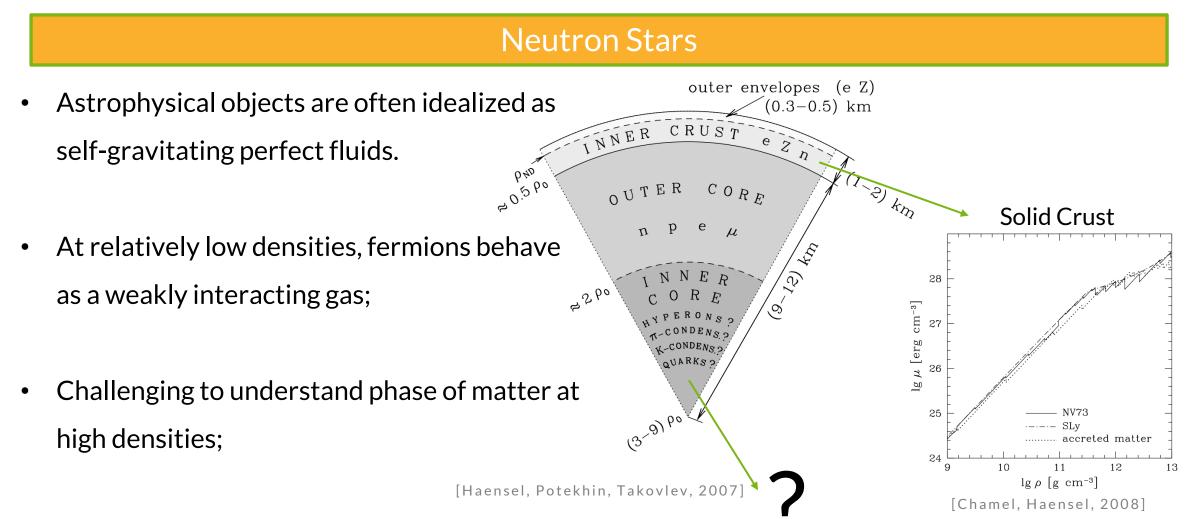


Elastic Compact Objects and Compactness Bounds XV Black Holes Workshop- 19/12/2022 Guilherme Raposo CIDMA - Aveiro University

arXiv: 2107.12272, arXiv: 2202.00043 + CQG (Jan.2023) with Artur Alho, José Natário and Paolo Pani

Introduction

Why Elasticity in Compact Objects?



Introduction

Why Elasticity in Compact Objects?

Tests of the BH paradigm and Exotic Compact Objects

• Buchdahl Limit: (GR, fluids, isotropy)

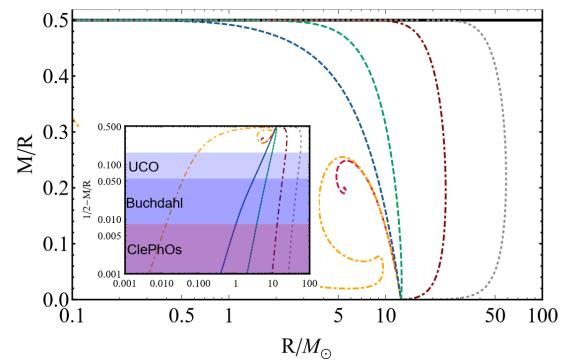
M/R < 4/9

• Several works have studied stars made of anisotropic fluid...

[Bowers, Liang, 1974; Dev, Gleiser, 2002; Mak, Harko, 2003; Raposo+, 2018]

... but, no physical motivation for the fluid model.

• Elastic matter naturally describes anisotropies



Introduction

Why Elasticity in Compact Objects?

Tests of the BH paradigm and Exotic Compact Objects

• Beyond Buchdahl: (GR, fluids, istropy)

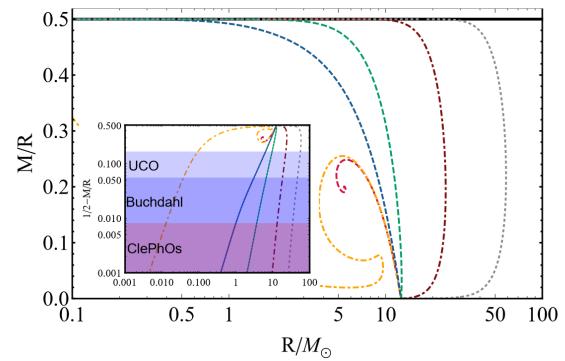
 $M/R \rightarrow 1/2$

• Several works have studied stars made of anisotropic fluid...

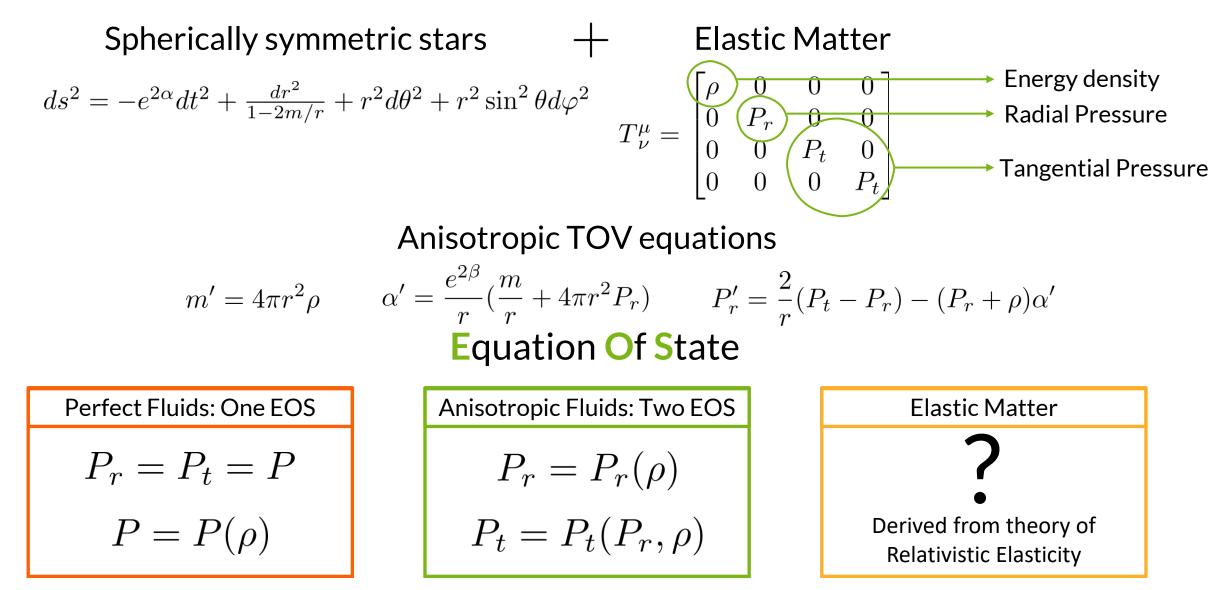
[Bowers, Liang, 1974; Dev, Gleiser, 2002; Mak, Harko, 2003; Raposo+, 2018]

... but, no physical motivation for the fluid model.

• Elastic matter naturally describes anisotropies



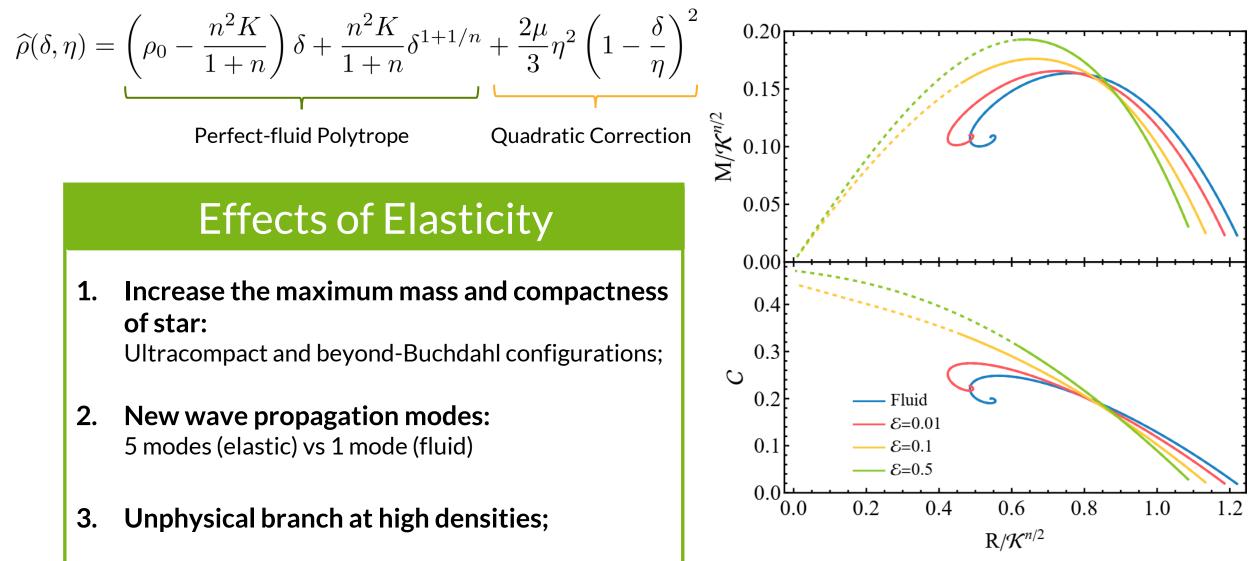
Compact Objects in GR



Equation of State

Fluid Materials	Elastic Theory in a nutshell	
$\rho = \rho(n)$ $P = \left(n \frac{\partial \rho(n)}{\partial n} - \rho\right)$ Number density	ReferencePhysicalspacetimespacetime(undeformed)(deformed) (\mathcal{B}, γ) (\mathcal{M}, g)	
Elastic Materials	Mapping	
$\rho = \rho(n_1, n_2 = n_3)$ Linear density $P_i = (n_i \frac{\partial \rho}{\partial n_i} - \rho)$ $n_1(t, r) = e^{-\beta} R'(r), \qquad n_2(t, r) = n_3(t, r) = \frac{R(r)}{r}.$	Π (ρ, P_i) Elastic Strain $\sim (H^{IJ} - \gamma^{IJ})$	

Example: Polytropic EOS

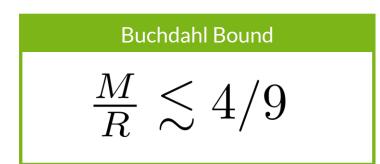


Compactness Bounds in GR

How compact can a "non-exotic" compact object be?

Incompressible Fluid EOS

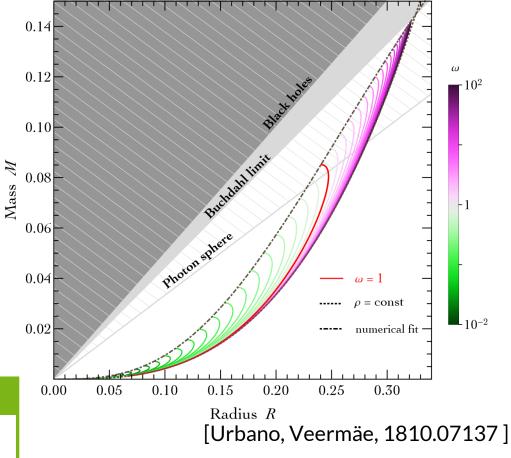
$$\rho(r) = \rho_0$$



Linear Equation of State

$$P = c_s^2(\rho - \rho_0)$$

۰.			
	Causal Buchdahl Bound	Causal + stable Buchdahl Bound	0.00 0.05 0.10 0.15
			Rac [Ur
	M < 0.2c4	M < 0.254	[0]
	$\frac{M}{R} \lesssim 0.364$	$\frac{M}{R} \lesssim 0.354$	
	$II + \mathbf{S}$		



Constant Sound Speed EOS

$$\rho = \rho_0 \left[\left(\frac{1}{\gamma} - \varepsilon - 2\theta \right) (n_1 n_2 n_3)^{\gamma} + \varepsilon (n_1^{\gamma} + n_2^{\gamma} + n_3^{\gamma}) + \theta \left[(n_1 n_2)^{\gamma} + (n_2 n_3)^{\gamma} + (n_3 n_1)^{\gamma} \right] + \frac{\gamma - 1}{\gamma} - 2\varepsilon - \theta \right]$$

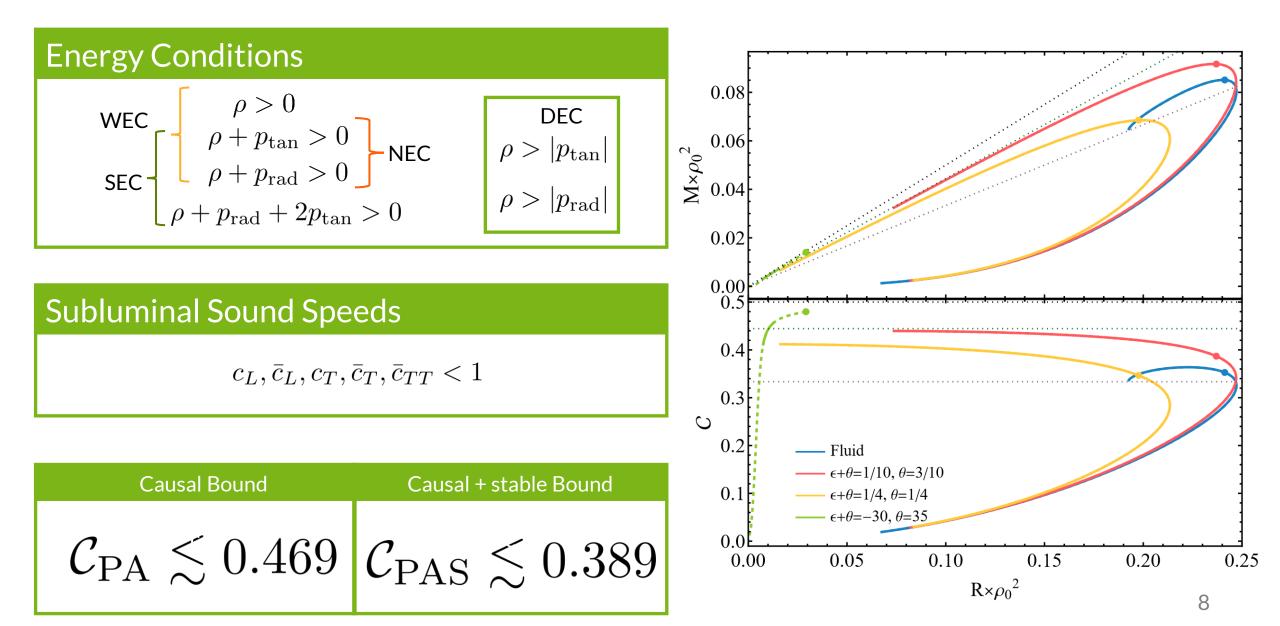
Important Remarks:

- For elastic materials we cannot set all sound speeds constant.
- Ultrarigid EOS fixes sound speed of **longitudinal waves**!

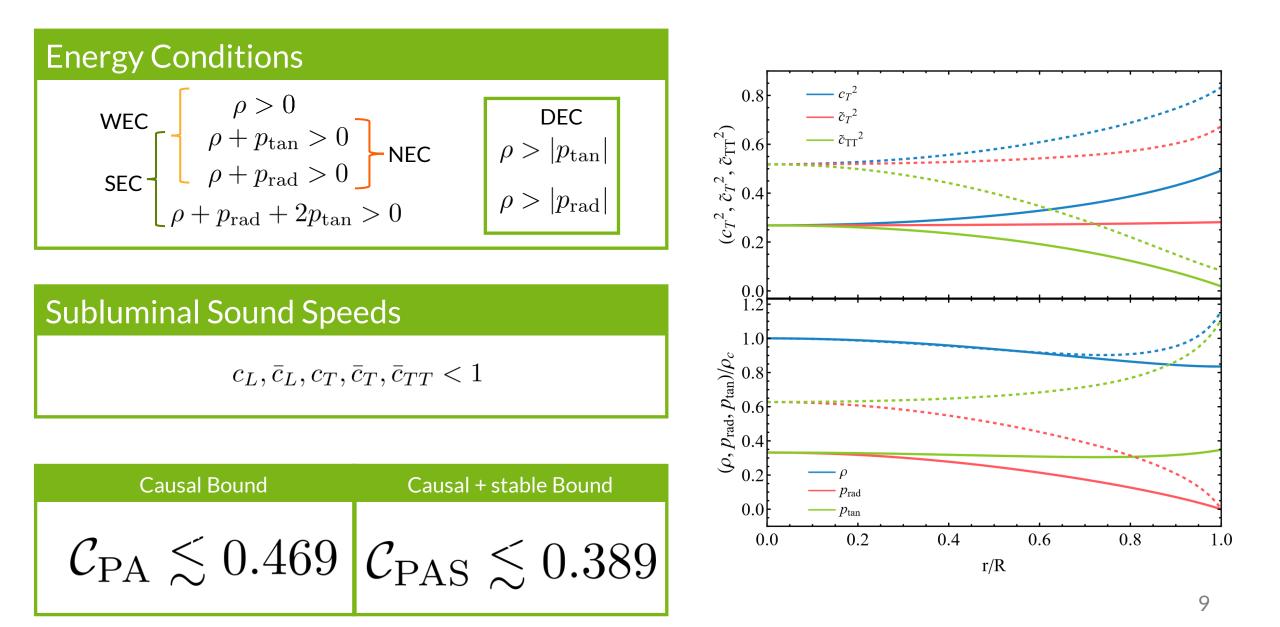
$$c_{\mathrm{L}i}^2 = n_i^2 \frac{\partial^2 \rho}{\partial n_i^2} / (\rho + p_i) = \gamma - 1$$

4 parameters in the EOS

Compactness Bounds



Compactness Bounds



Summary and Final Remarks

Formulation:

 Introduced a simple relativistic formalism to include elastic effects in the description of compact objects;

Elastic EOS

- Generalization of the polytrope: **Quadratic elastic correction**;
- Generalization of linear (fluid) EOS: Ultrarigid EOS

Results:

- Elastic Stars: elasticity contributes to increase the maximum mass and compactness;
- Derive a novel set of compactness bounds that extend Buchdahl's results.

	$\mathcal{C}_{ ext{Buchdahl}}$	$\mathcal{C}_{ ext{PA}}$	$\mathcal{C}_{ ext{PAS}}$
Fluid	4/9	0.365	0.354
Elastic	1/2	0.469	0.389

Multilayer Neutron Stars

- Setup of stars with different elastic layers and combination of fluid and elastic layers.
- Effects of the solid crust/solid core in fluid neutron stars.

Beyond Spherical symmetry

- Extend the formalism in Part I to spacetimes with less symmetry;
- Rotating Stars, Deformed Stars, Tidal deformations

1+1 NR evolution

Thank you

Elastic Compact Objects and Compactness Bounds XV Black Holes Workshop- 19/12/2022 Guilherme Raposo CIDMA - Aveiro University

arXiv: 2107.12272, arXiv: 2202.00043 + CQG (Jan.2023) with Artur Alho, José Natário and Paolo Pani

Part III

Extra Slides

Relativistic Elasticity

[Carter&Quintana; Kijowski&Magli; **Beig&Schmidt,2018**] **Concrete example:** Spherically Symmetric, Static Spacetime

• Step 1: Set the geometry in the two physical spacetime and the material spacetime

 $ds^{2} = -e^{2\alpha}dt^{2} + e^{2\beta}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2}) \qquad \gamma = e^{2\beta_{0}(R)}dR^{2} + R^{2}(d\Theta^{2} + \sin^{2}\Theta d\Phi^{2}).$

• Step 2: Assign the *mapping* between both and the *configuration gradient* $f^A_\mu = \partial X^A / \partial x^\mu$

$$R = R(t, r), \qquad \Theta = \theta, \qquad \Phi = \varphi,$$

• Step 3: Compute the pushforward metric H^{AB} and orthogonal metric to 4-velocity;

$$H^{RR} = e^{-2\beta} (R')^2, \qquad H^{\Theta\Theta} = \frac{1}{r^2}, \qquad H^{\Phi\Phi} = \frac{1}{r^2 \sin^2 \theta}$$

$$h_{rr} = e^{2\beta}, \quad h_{\theta\theta} = r^2, \quad h_{\varphi\varphi} = r^2 \sin^2 \theta,$$

Relativistic Elasticity

Concrete example: Spherically Symmetric, Static Spacetime

• **Step 4**: Dynamics and matter:

$$S[\Psi] = \int_{\mathcal{M}} \rho(\Psi, d\Psi) \sqrt{-\det(g)} d^4 x_{\text{[Natário, 2019]}}$$

$$T_{\mu\nu} = 2\frac{\partial\rho}{\partial g^{\mu\nu}} - \rho g_{\mu\nu}, \qquad \qquad T_{\mu\nu} = \rho u_{\mu}u_{\nu} + \sigma_{\mu\nu}, \qquad \qquad \sigma_{\mu\nu}u^{\nu} = 0,$$

• **Step 5:** Homogeneous and isotropic materials;

$$\rho = \hat{\rho}(i_1(\mathcal{H}), i_2(\mathcal{H}), i_3(\mathcal{H})), \qquad \sigma_{\mu\nu} = \sum_{i=1}^3 (n_i \frac{\partial \rho}{\partial n_i} - \rho) e_{(i)\mu} e_{(i)\nu}, \quad \sigma_{\nu}^{\mu} e_{(i)}^{\nu} = p_i e_{(i)}^{\mu},$$
Principal invariants
Drincipal processors in the iteration

Principal pressure in the i'th direction

Relativistic Elasticity

Concrete example: Spherically Symmetric, Static Spacetime

First Result: Pressures can be computed from the energy density.

$$P_i = \left(n_i \frac{\partial \rho}{\partial n_i} - \rho\right) - \cdots -$$

-

Not enough to close the system of equations.

First law of thermodynamics for perfect-fluids:

$$P = \left(\rho_b \frac{\partial \rho}{\partial \rho_b} - \rho\right)$$

• **Step 6:** Principle Linear Densities

$$n_1(t,r) = e^{-\beta} R'(r), \qquad n_2(t,r) = n_3(t,r) = \frac{R(r)}{r}.$$

Final Equation to close the system

Relativistic Elasticity - Summary

$$m' = 4\pi r^2 \rho \qquad \alpha' = \frac{e^{2\beta}}{r} \left(\frac{m}{r} + 4\pi r^2 P_r\right) \qquad P'_r = \frac{2}{r} (P_t - P_r) - (P_r + \rho) \alpha'$$

Equation of State		
$ \rho = \hat{\rho}(\delta, \eta), $	$P_r = \delta \partial_\delta \hat{\rho} - \rho,$	$P_t = P_r + 3/2\eta \partial_\eta \rho,$

Elastic Equation	
$\eta' = -\frac{3}{r}(\eta - e^\beta \delta)$	

Part II:

Elastic Stars

arXiv: 2107.12272

Polytropic Elastic Stars

 $\begin{array}{ll} \mbox{Polytropic (Fluid) Equation of State:} \\ \rho = \rho_b + n \mathcal{K} \rho_b^{1+1/n} & P = \mathcal{K} \rho_b^{1+1/n} \end{array}$

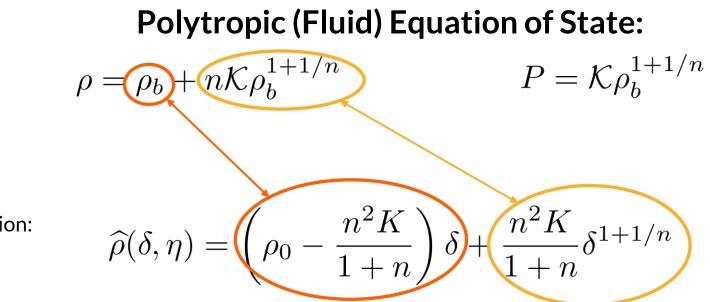
In the elastic notation:

$$\widehat{\rho}(\delta,\eta) = \left(\rho_0 - \frac{n^2 K}{1+n}\right)\delta + \frac{n^2 K}{1+n}\delta^{1+1/n}$$

Simplest Elastic generalization:

$$\widehat{\rho}(\delta,\eta) = \left(\rho_0 - \frac{n^2 K}{1+n}\right)\delta + \frac{n^2 K}{1+n}\delta^{1+1/n} + \frac{2\mu}{3}\eta^2 \left(1 - \frac{\delta}{\eta}\right)^2$$
Perfect-fluid Polytrope Quadratic Correction

Polytropic Elastic Stars



In the elastic notation:

Simplest Elastic generalization:

$$\widehat{\rho}(\delta,\eta) = \left(\rho_0 - \frac{n^2 K}{1+n}\right)\delta + \frac{n^2 K}{1+n}\delta^{1+1/n} + \frac{2\mu}{3}\eta^2 \left(1 - \frac{\delta}{\eta}\right)^2$$
Perfect-fluid Polytrope Quadratic Correction

Reference-frame invariance

$$\widehat{\rho}(\delta,\eta) = \left(\rho_0 - \frac{n^2 K}{1+n}\right)\delta + \frac{n^2 K}{1+n}\delta^{1+\frac{1}{n}} + \frac{2\mu}{3}\eta^2 \left(1 - \frac{\delta}{\eta}\right)^2$$

- Why does the reference state do not appear when we study polytropes?
- Consider a new reference state compressed by a volume factor:

$$\delta = f\tilde{\delta} \qquad \qquad \eta = f\tilde{\eta}$$

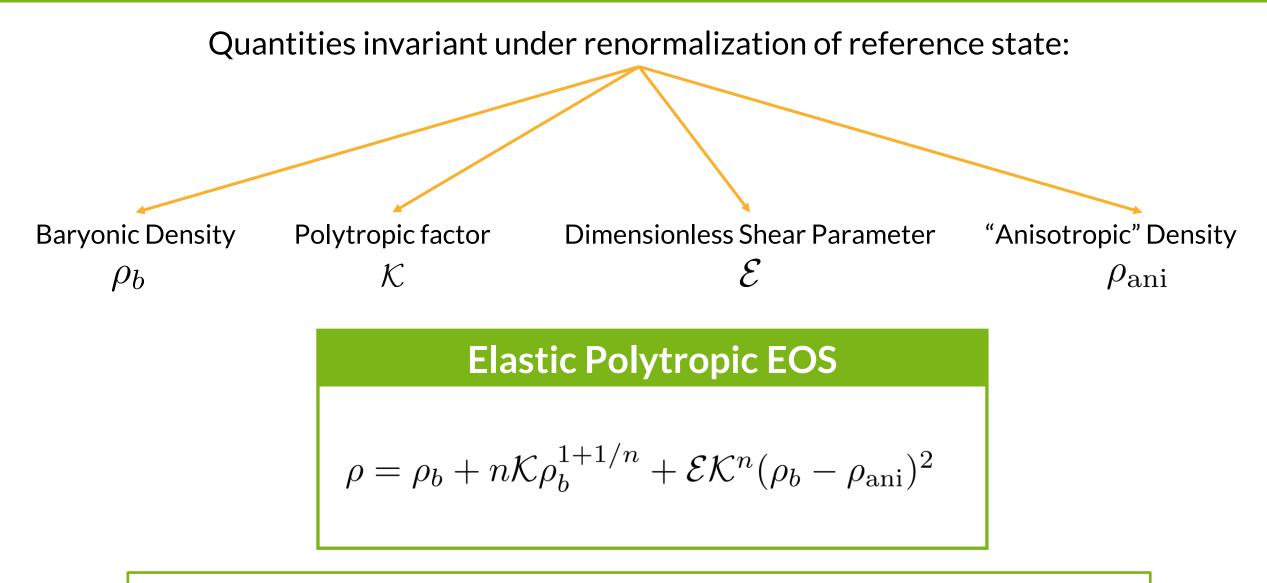
$$\hat{\rho}(\tilde{\delta},\tilde{\eta}) = \left(\rho_0 - \frac{n^2 K}{1+n}\right) f\tilde{\delta} + \frac{n^2 K}{1+n} f^{1+\frac{1}{n}} \tilde{\delta}^{1+\frac{1}{n}} + \frac{2\mu}{3} f^2 (\tilde{\delta} - \tilde{\eta})^2 \right)$$

• However, by appropriate parameter redefinition:

$$\hat{\rho}(\tilde{\delta},\tilde{\eta}) = \left(\tilde{\rho}_0 - \frac{n^2 \tilde{K}}{1+n}\right)\tilde{\delta} + \frac{n^2 \tilde{K}}{1+n}\tilde{\delta}^{1+\frac{1}{n}} + \frac{2\tilde{\mu}}{3}(\tilde{\delta} - \tilde{\eta})^2$$

Reference-frame choice is akin to a gauge choice

Reference-frame invariance

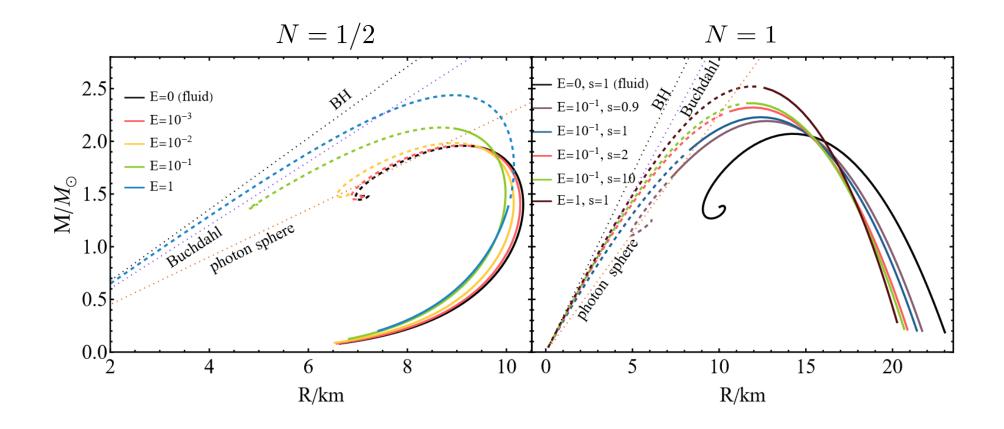


Reference-frame dependent quantities do not appear in the final equations

Equilibrium Configurations

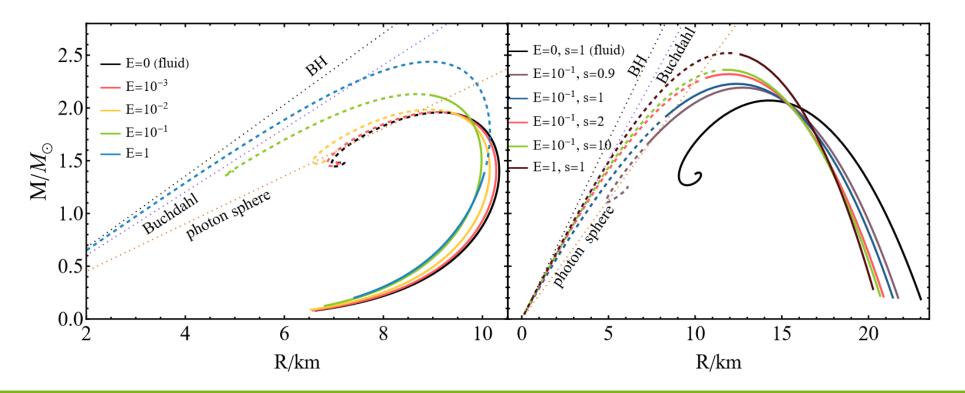
$$\rho = \rho_b + n\mathcal{K}\rho_b^{1+1/n} + \mathcal{E}\mathcal{K}^n(\rho_b - \rho_{\rm ani})^2 \qquad P_r = \rho_b \frac{\partial\rho}{\partial\rho_b} - \rho \qquad \qquad P_t - P_r = \frac{3}{2}\rho_{\rm ani}\frac{\partial\rho}{\partial\rho_{\rm ani}}$$

For each $\mathcal E$ there is a one parameter family of solutions depending on central density.



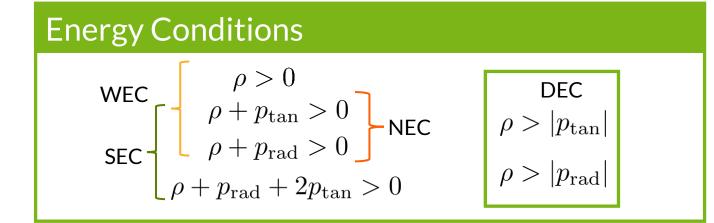
Equilibrium Configuration

Properties of Equilibrium Configurations:



- 1. Elasticity increases the maximum mass and compactness of star;
- 2. Ultracompact and beyond-Buchdahl configurations;

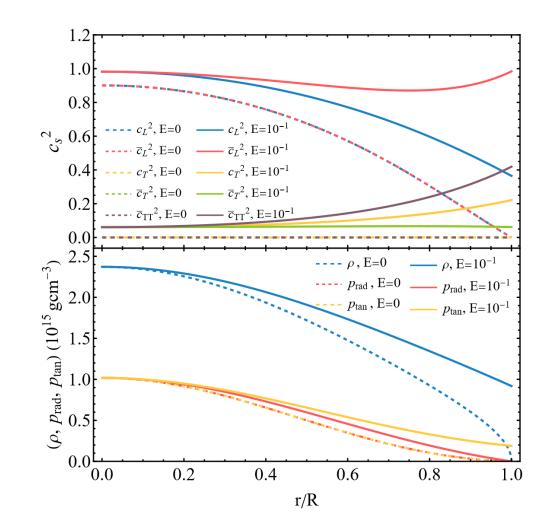
Viability Conditions



Subluminal Sound Speeds

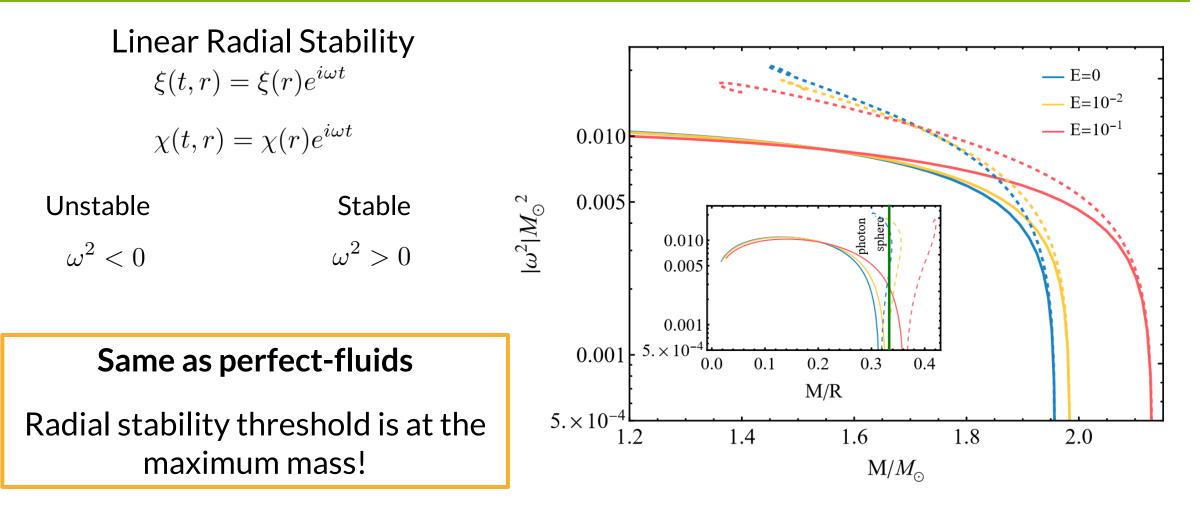
Missed in most of anisotropic studies!

- C_L Longitudinal Waves in the Radial direction
- $ar{c}_L$ Longitudinal Waves in the Tangential direction
- C_T Transverse Waves in the Radial direction
- \bar{c}_T Transverse Waves in the Tangential direction

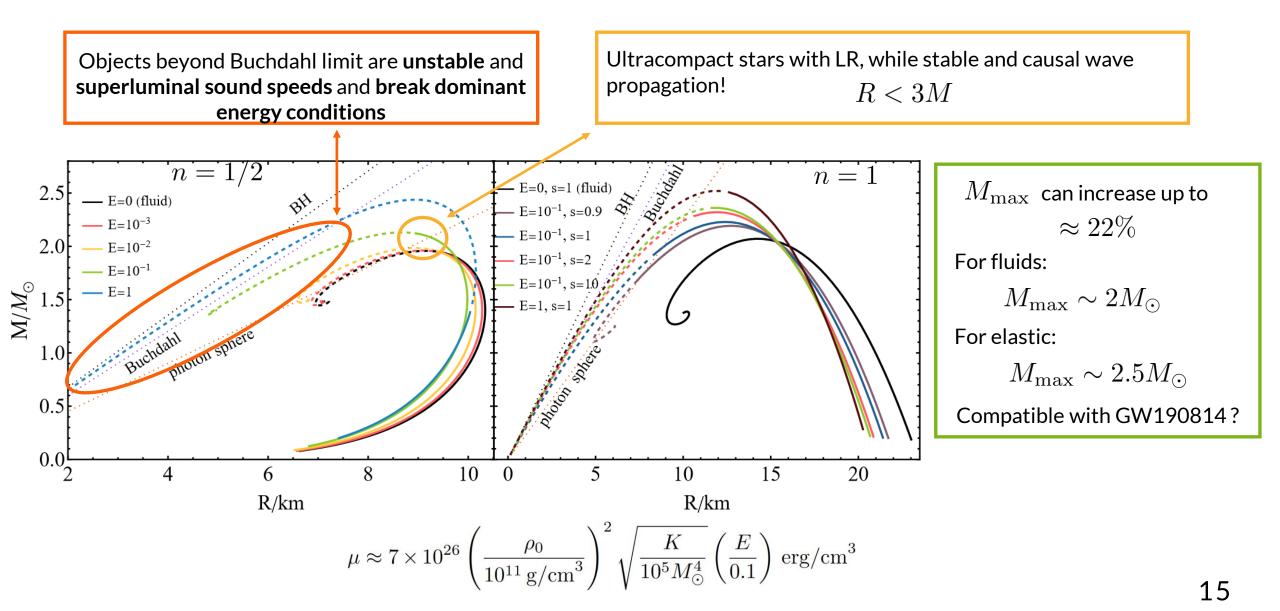


Viability Conditions

Stability:



Part I - Final Remarks



Part III

Compactness Bounds in GR

arXiv: 2202.00043

Buchdahl Bound

How compact can a "non-exotic" compact object be?

TOV + Incompressible Fluid EOS

$$m' = 4\pi r^2 \rho$$

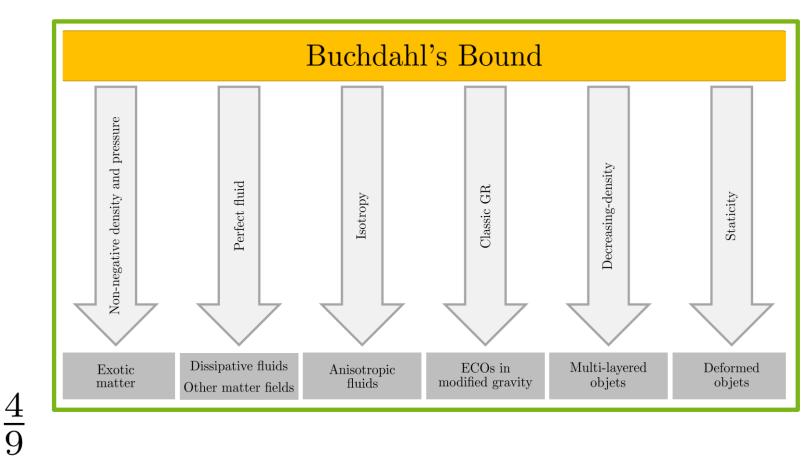
$$\alpha' = \frac{e^{2\beta}}{r} (\frac{m}{r} + 4\pi r^2 P_r)$$

$$P' = -(P + \rho) \alpha'$$

$$\rho(r) = \rho_c$$

Can be solved analytically:

$$\frac{M}{R} = \frac{2(p_c \rho_c + 2p_c^2)}{(3p_c + \rho_c)^2} < \frac{1}{2}$$



Causal Buchdahl Bound

How compact can a "non-exotic" **and casual** compact object be?

Causality Condition:

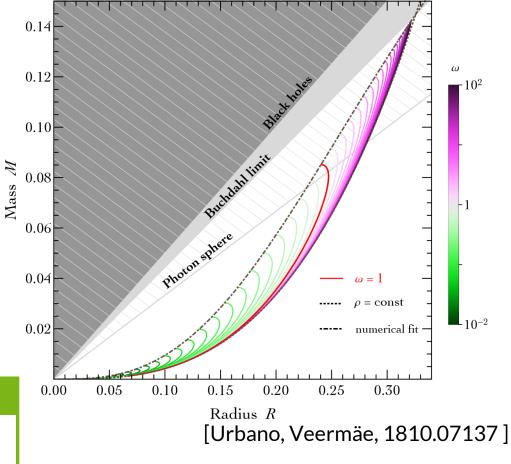
$$0 \leq c_s^2 \equiv dP/d\rho \leq 1$$

Linear Equation of State

$$P = c_s^2(\rho - \rho_0)$$

No analytical solution: Solve numerically TOV

Causal Buchdahl Bound	Causal + stable Buchdahl Bound	
$\frac{M}{R} \lesssim 0.364$	$\frac{M}{R} \lesssim 0.354$	



Constant Sound Speed EOS

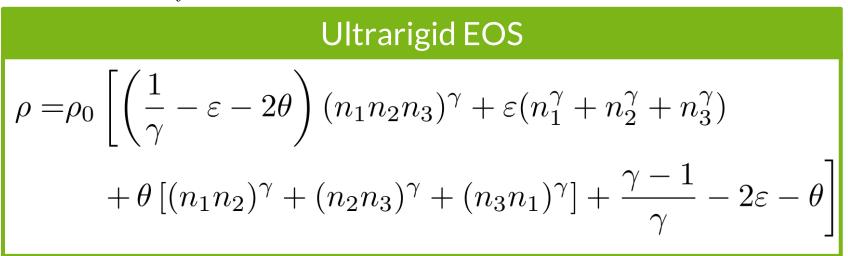
Generalization of Linear Equation of State

$$P = c_s^2(\rho - \rho_0)$$

Important Remarks:

- For elastic materials we cannot set all sound speeds constant.
- At the center: Longitudinal waves must propagate faster than transverse waves;

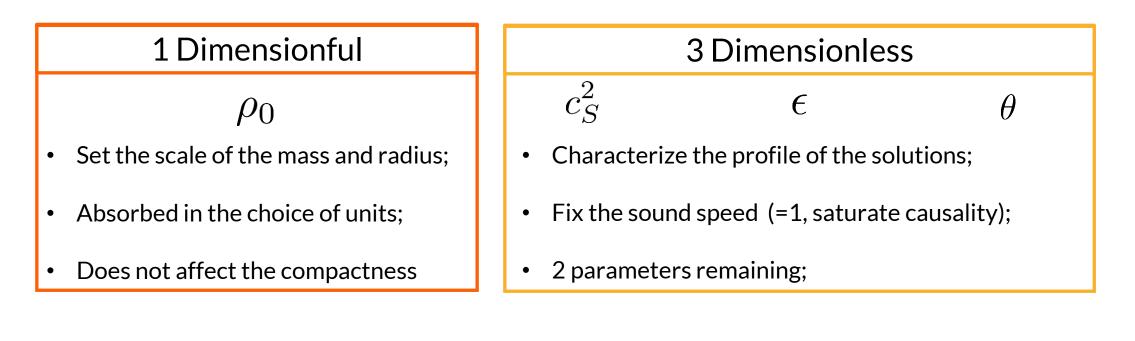
• Best choice:
$$c_{{
m L}i}^2=n_i^2rac{\partial^2
ho}{\partial n_i^2}/(
ho+p_i)=\gamma-1$$



Stress-Free Material: Reference frame matters.

Constant Sound Speed EOS

4 EOS parameters



Particular cases:

 $(\epsilon = 0, \theta = 1/4)$

 $(\epsilon = \theta = 0)$

Christodoulou's hard phase material;

Karlovini-Samuelsson SUREOS

 $(\epsilon = \theta = 1/8)$

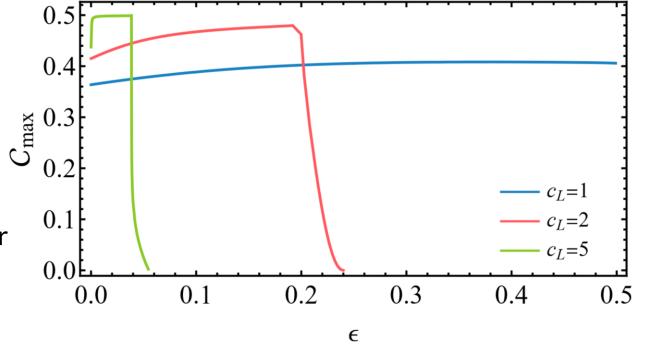
Brotas Rigid Solid

Generalized Buchdahl's Bound

For each set of parameters there is a one parameter family of solutions depending on central density.

- The maximum compactness grows with the sound speed;
- In the fluid limit we recover Buchdahl's bound. $\mathcal{C}_{\max}(\mu=0) \to 4/9$
- **Buchdahl bound** abruptly tends to the **BH limit** for elastic materials (even for small parameters).

$$\mathcal{C}_{\max}(\mu \neq 0) \rightarrow 1/2$$



However: Buchdahl's bound, are obtained in **unphysical** configurations!

Bounds on the parameter space

• Positivity of the bulk modulus;

$$\epsilon + \theta < \frac{3}{8}$$

• Real transverse sound speeds in the **reference state**:

$$\epsilon + \theta > 0$$

• Positivity of bulk modulus, pressure and density for **large densities**

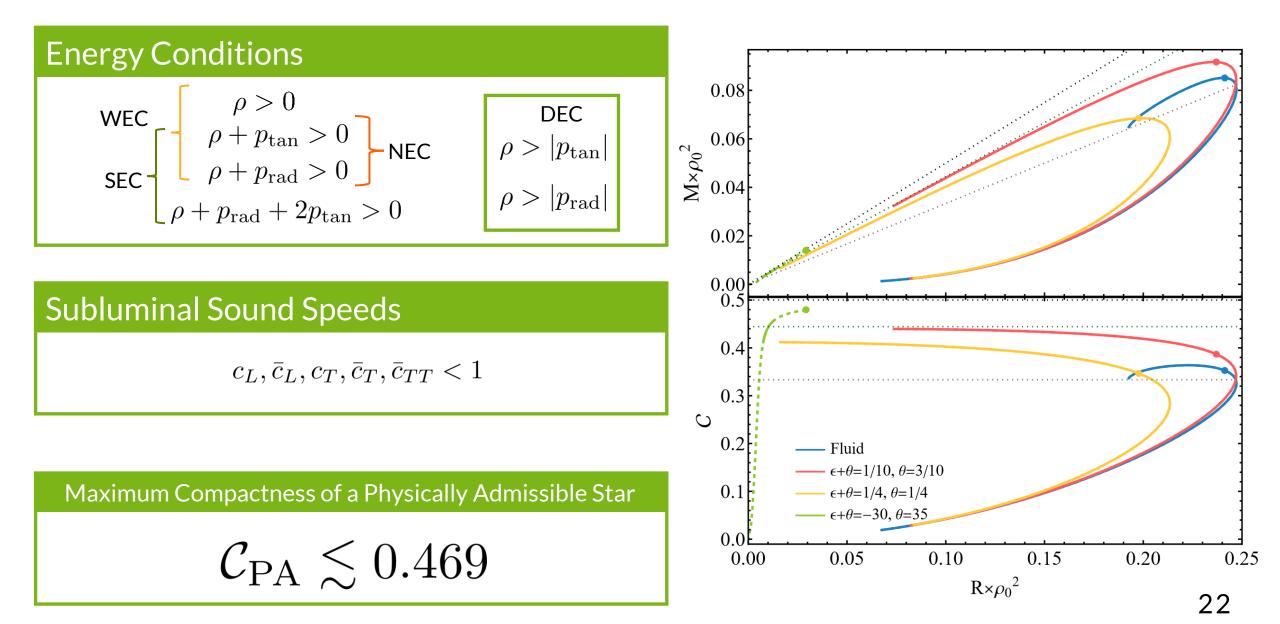
$$\epsilon + 2\theta < \frac{1}{2}$$

• Reality of the transverse speed in the isotropic state for **large densities**

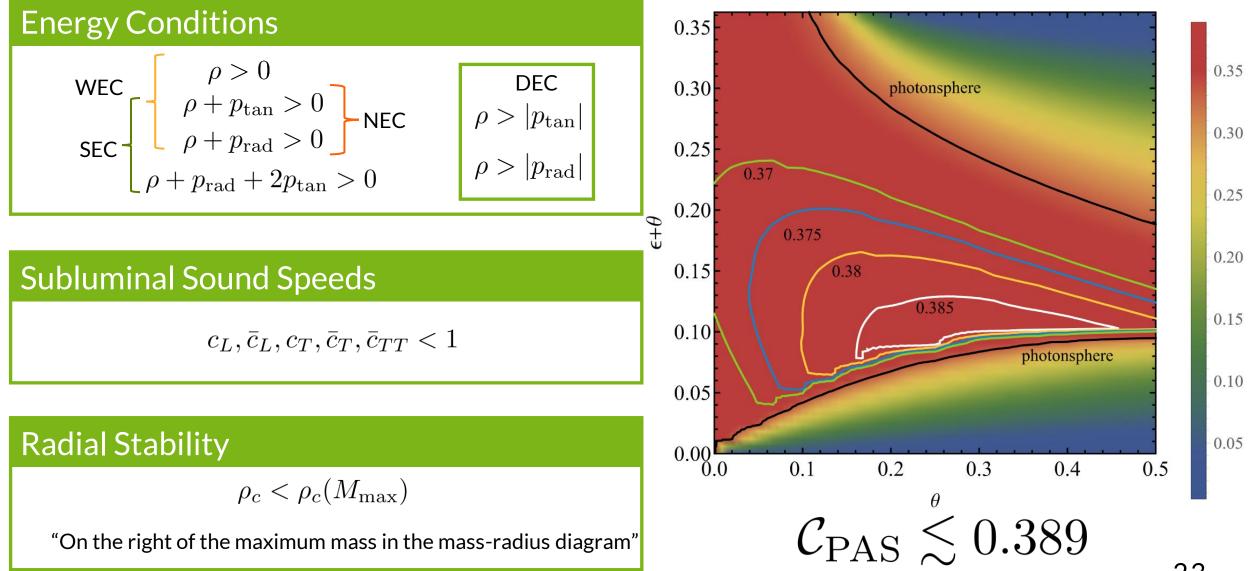
 $\theta > 0$

21

Physically Admissible

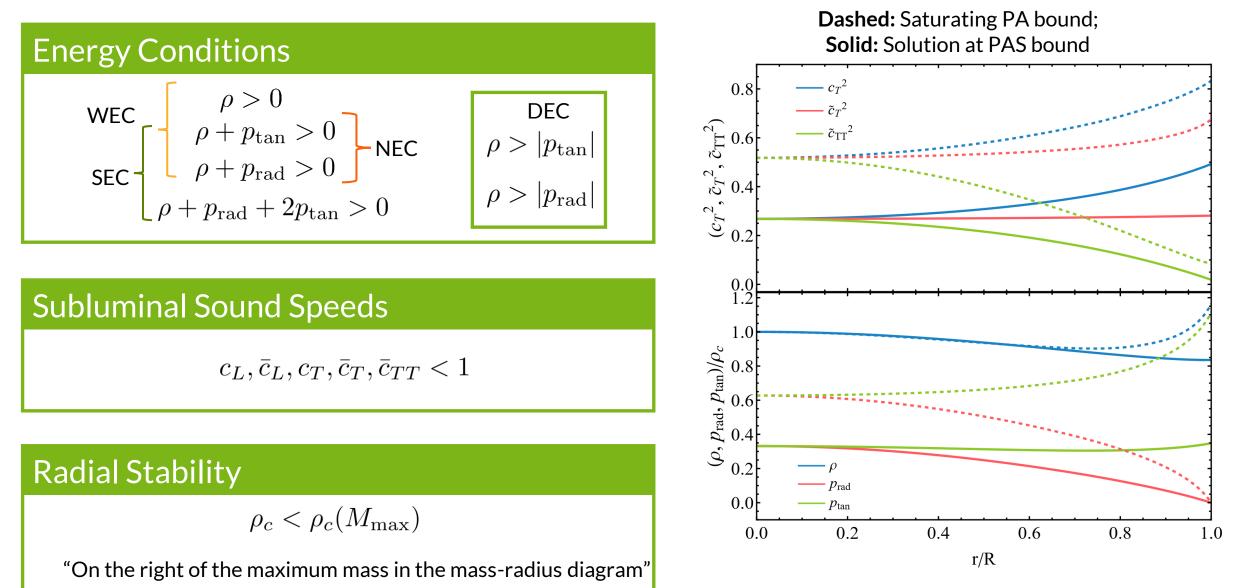


Physically Admissible and Stable



23

Physically Admissible and Stable



Summary and Final Remarks

Part I:

 Introduced a simple relativistic formalism to include elastic effects in the description of compact objects;

Part II: Elastic Stars

- Introduce the simplest generalization to polytropic fluids;
- We construct elastic stars: elasticity increases the mass and compactness of the stars.
- Elasticity can be used to construct ECOs and also more accurately model NS.

Part III: Generalized Compactness Bounds

- Introduce the most general equation of state for a rigid body;
- Derive a novel set of compactness bounds that extend Buchdahl's results.

	$\mathcal{C}_{ ext{Buchdahl}}$	$\mathcal{C}_{ ext{PA}}$	$\mathcal{C}_{ ext{PAS}}$
Fluid	4/9	0.365	0.354
Elastic	1/2	0.469	0.389

Multilayer Neutron Stars

- Setup of stars with different elastic layers and combination of fluid and elastic layers.
- Effects of the solid crust/solid core in fluid neutron stars.

Beyond Spherical symmetry

- Extend the formalism in Part I to spacetimes with less symmetry;
- Rotating Stars, Deformed Stars, Tidal deformations

1+1 NR evolution

Thank you