Motion of S2 and•bounds on scalar - clouds around STgrA*
 Arianna Foschi, Paulo Garcia, Vitor Cardoso \& the GRAVITY collaboration

 19 Dec. 2022
grit gravitation in técnico

Motivation

Idea: Constrain an ultralight scalar field cloud around the supermassive Black Hole (BH), Sagittarius A^{*}, at the center of the Milky Way using orbital motion of Sstars.

We will focus on star $\mathbf{S 2}$.
Data: We have astrometry (positions in the sky) and spectroscopy (radial velocity measurements).

Motivation: Ultralight bosons are possible candidates for Dark Matter (DM).
DM may cluster around supermassive BHs (Sadeghian et al. 2013).

Several works used S-stars to obtain upper bounds on the extended mass around Sgr A*.

Credits to S. Gillessen, GRAVITY Coll., Max Planck Institute

Setup

$$
S=\int d^{4} x \sqrt{-g}\left(\frac{R}{16 \pi G c^{-4}}-\frac{1}{2} g^{\alpha \beta} \partial_{\alpha} \Psi * \partial_{\beta} \Psi *-\frac{\mu}{2} \Psi \Psi^{*}\right) \quad \text { Mass coupling: } \alpha=r_{g} \mu=\left[\frac{G M_{*}}{c^{2}}\right]\left[\frac{m_{s} c}{\hbar}\right]
$$

In the limit $\alpha \ll 1$, the fundamental mode of the field $(\ell=m=1)$ is given by (Brito et al. 2015)

$$
\Psi=A_{0} e^{-i\left(\omega_{R} t-\varphi\right)} r \alpha^{2} e^{-r \alpha^{2} / 2} \sin \theta \quad \text { where } \quad A_{0}^{2}=\Lambda \frac{\alpha^{4}}{64 \pi} \quad\left(\Lambda=\frac{M_{\text {cloud }}}{M_{0}}\right)
$$

Credits for image to Ana Carvalho, from Brito et al. 2015

Setup

$$
S=\int d^{4} x \sqrt{-g}\left(\frac{R}{16 \pi G c^{-4}}-\frac{1}{2} g^{\alpha \beta} \partial_{\alpha} \Psi * \partial_{\beta} \Psi *-\frac{\mu}{2} \Psi \Psi^{*}\right) \quad \text { Mass coupling: } \alpha=r_{g} \mu=\left[\frac{G M_{*}}{c^{2}}\right]\left[\frac{m_{s} c}{\hbar}\right]
$$

In the limit $\alpha \ll 1$, the fundamental mode of the field $(\ell=m=1)$ is given by (Brito et al. 2015)

$$
\Psi=A_{0} e^{-i\left(\omega_{R} t-\varphi\right)} r \alpha^{2} e^{-r \alpha^{2} / 2} \sin \theta \quad \text { where } \quad A_{0}^{2}=\Lambda \frac{\alpha^{4}}{64 \pi} \quad\left(\Lambda=\frac{M_{\text {cloud }}}{M_{0}}\right)
$$

The energy density of the scalar field is:

$$
\rho=\frac{m_{s}^{2} c^{2}}{\hbar^{2}}|\Psi|^{2}+\mathcal{O}\left(c^{-4}\right)
$$

Solving $\nabla^{2} U_{\text {scalar }}=4 \pi \rho$ we obtain the scalar potential:

$$
U_{\text {salar }}=\sum_{\ell m} \frac{4 \pi}{2 \ell+1}\left[q_{\ell m}(r) \frac{Y_{\ell m}(\theta, \varphi)}{r^{\ell+1}}+p_{\ell m}(r) r^{\ell} Y_{\ell m}(\theta, \varphi)\right]=\Lambda\left[P_{1}(r, \alpha)+P_{2}(r, \alpha) \cos ^{2} \theta\right]
$$

and the Lagrangian:

$$
\mathscr{L}=\frac{1}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}\right)+\frac{M_{\dot{\prime}}}{r}+\Lambda\left(P_{1}(r, \alpha)+P_{2}(r, \alpha) \cos ^{2} \theta\right)
$$

Setup

Corrections to the Newtonian model
 (GRAVITY Coll. 2018, Alexander 2005)

- Newtonian effect: the Roemer delay due to finite value of c.
- Relativistic effects: the Doppler shift and the gravitational redshift.
- 1 Post Newtonian (PN) correction

Schwarzschild precession has been detected on S 2 motion at 8σ confidence level (GRAVITY Coll. 2020)

$$
a_{1 \mathrm{PN}}=f_{\mathrm{SP}} \frac{M_{\bullet}}{r^{2}}\left[\left(\frac{4 M_{\bullet}}{r}-v^{2}\right) \frac{r}{r}+4 \dot{r} v\right]
$$

where $f_{\mathrm{SP}}=1, \boldsymbol{r}=r \hat{r}, \boldsymbol{v}=(\dot{r} \hat{r}, r \dot{\theta} \hat{\theta}, r \dot{\phi} \sin \theta \hat{\phi}), v=|\boldsymbol{v}|$

Method

First step: minimize the χ^{2}

Effective peak position of ρ

$$
R_{\text {peak }}=\frac{\int_{0}^{\infty} \rho \bar{r} d \bar{r}}{\int_{0}^{\infty} \rho d \bar{r}}=\frac{3 M_{-}}{\alpha^{2}}
$$

Smaller uncertainties in Λ for

$$
0.01 \lesssim \alpha \lesssim 0.3
$$

which (roughly) corresponds to

$$
\begin{gathered}
35 M_{\bullet} \lesssim R_{\text {peak }} \lesssim 30000 M_{.} \\
\left(3000 M_{.} \lesssim r_{S 2} \lesssim 50000 \mathrm{M}_{.}\right)
\end{gathered}
$$

Method

Second step: applying Markov Chain Monte Carlo (MCMC) method using emcee (Foreman-Mackey et al. 2013) Python package

We need to sample $\quad P(\theta \mid D) \propto P(D \mid \theta) P(\theta) \quad$ for different fixed values of α

$$
\begin{aligned}
& D=\text { data set } \\
& \theta_{i}=\underbrace{\begin{array}{c}
\text { Scalar field } \\
\text { fractional } \\
\text { mass }
\end{array}}_{\text {Keplerian elements } \begin{array}{l}
\text { BH Mass } \\
\begin{array}{c}
\text { nd GC } \\
\text { distance }
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
\text { Correction to to and RV } \\
\text { NAD } \\
\text { data }
\end{array}
\end{array}}
\end{aligned}
$$

$P(D \mid \theta)=$ Gaussian Likelihood
$P(\theta)=$ Uniform priors for physical parameters, Gaussian priors for $\left(x_{0}, y_{0}, v_{x 0}, v_{y 0}, v_{z 0}\right)$ (Plewa et al. 2015)

Method

Second step: applying Markov Chain Monte Carlo (MCMC) method using emcee (Foreman-Mackey et al. 2013) Python package

	$\hat{\Lambda}=\arg \max \mathscr{L}\left(\Lambda_{\alpha}\right.$	
α	$\hat{\Lambda}$	
0.00065	$\lesssim(0.470,0.980)$	0.09
0.001	$\lesssim(0.470,0.980)$	0.08
0.002	$\lesssim(0.440,0.978)$	-0.06
0.0035	$\lesssim(0.140,0.780)$	-10.58
0.006	0.34671 ± 0.13666	1.44
0.01	0.00361 ± 0.00147	1.29
0.015	0.00101 ± 0.00042	1.24
0.02	0.00075 ± 0.00030	1.33
0.025	0.00068 ± 0.00028	1.35
0.03	0.00073 ± 0.00029	1.33
0.045	0.00328 ± 0.00135	1.27
0.075	$\lesssim(0.0013,0.0052)$	0.0001

Orange bands: 1σ confidence interval, such that $P\left(\Lambda_{\alpha}<\Lambda_{1} \mid D\right) \approx 68 \%$ of $P\left(\Lambda_{\alpha} \mid D\right)$

Bayes' factor $\quad K=\frac{\mathscr{L}\left(\hat{\Lambda}_{\alpha} \mid D\right)}{\mathscr{L}(\Lambda=0 \mid D)}$

According to (Kass \& Raftery 1995):
$1 \leq \log _{10} K \leq 2 \quad$ evidence is strong
$\log _{10} K>2 \quad$ evidence is decisive

Conclusions, possible issues and future prospects

To summarize...

We used the astrometry and the radial velocity measurements of S 2 to constrain the fractional mass
$\Lambda=M_{\text {cloud }} / M$ of a boson field cloud around Sgr A*.
Orbital range of S 2 only allow us to constrain $0.01 \lesssim \alpha \lesssim 0.045$ and we found $\Lambda \lesssim 10^{-3}$ at 3σ confidence level.

Cloud formation process

Fluctuations of massive scalar fields can be exponentially amplified by superradiance (Brito et al. 2015). However, (Kodama \& Yoshino 2012) show that for $M_{\bullet} \sim 4 \cdot 10^{6} M_{\odot}$

$$
m_{s} \geq 10^{-18} \mathrm{eV} \quad\left(\alpha=0.045, m_{s} \simeq 3 \cdot 10^{-18} \mathrm{eV}\right)
$$

However, we can assume DM existed by itself in the galaxy and the BH passes through it, leading to long-lived structures (Cardoso et al. 2022a, Cardoso et al. 2022b).

Conclusions, possible issues and future prospects

To summarize...

We used the astrometry and the radial velocity measurements of S 2 to constrain the fractional mass $\Lambda=M_{\text {cloud }} / M$ of a boson field cloud around Sgr A*.
Orbital range of S 2 only allow us to constrain $0.01 \lesssim \alpha \lesssim 0.045$ and we found $\Lambda \lesssim 10^{-3}$ at 3σ confidence level.

Possible issues and future works

- S 2 is orbiting on the equator of the BH , i.e. $\theta=\pi / 2$ but there are no evidences. However, max difference in the astrometry and radial velocity with orbit at $\theta=0$ is $\Delta \mathrm{DEC} \sim \Delta \mathrm{R} . \mathrm{A} . \approx 25 \%$ for $\alpha=0.01$ and $\Delta V_{R} \approx 15 \%$ for $\alpha=0.045$. Difference would be smaller for any $\theta \in(0, \pi / 2)$.
- No inclusion of BH's spin axis inclination with respect to observer frame. (GRAVITY Coll. 2019) showed that it plays important role in the effects the cloud has on S2 motion. Left for future works.
- Inclusion of other S-stars, and hence different orbital ranges, is needed in order to have stronger constraints or even a detection!

Conclusions, possible issues and future prospects

To summarize...

We used the astrometry and the radial velocity measurements of S 2 to constrain the fractional mass $\Lambda=M_{\text {cloud }} / M$ of a boson field cloud around Sgr A*.
Orbital range of S 2 only allow us to constrain $0.01 \lesssim \alpha \lesssim 0.045$ and we found $\Lambda \lesssim 10^{-3}$ at 3σ confidence level.

Possible issues and future works

- S 2 is orbiting on the equator of the BH , i.e. $\theta=\pi / 2$ but there are no evidences. However, max difference in the astrometry and radial velocity with orbit at $\theta=0$ is $\Delta \mathrm{DEC} \sim \Delta \mathrm{R}$. A. $\approx 25 \%$ for $\alpha=0.01$ and $\Delta V_{R} \approx 15 \%$ for $\alpha=0.045$. Difference would be smaller for any $\theta \in(0, \pi / 2)$.
- No inclusion of BH's spin axis inclination with respect to observer frame. (GRAVITY Coll. 2019) showed that it plays important role in the effects the cloud has on S2 motion. Left for future works.
- Inclusion of other S-stars, and hence different orbital ranges, is needed in order to have stronger constraints or even a detection!

Thank you for your attention!

Back-up slides

Setup

Corrections to the Newtonian model

(GRAVITY 2018, Alexander 2005)

- Newtonian effect: the Roemer delay due to finite value of c

Roemer equation: $\quad t_{\mathrm{obs}}-t_{\mathrm{em}}+\frac{z_{\mathrm{obs}}\left(t_{\mathrm{em}}\right)}{c}=0$
1st order expansion around $t_{\mathrm{obs}}: \quad t_{\mathrm{em}} \simeq t_{\mathrm{obs}}+\frac{z_{\mathrm{obs}}\left(t_{\mathrm{obs}}\right)}{c-v_{z_{\mathrm{obs}}}\left(t_{\mathrm{obs}}\right)}$
On average on S 2 orbit $\Delta t=t_{\mathrm{em}}-t_{\mathrm{obs}} \approx 8$ days

Setup

Corrections to the Newtonian model

(GRAVITY 2018, Alexander 2005)

- Newtonian effect: the Roemer delay due to finite value of c
- Relativistic effects: the Doppler shift and the gravitational redshift ($G=c=1$) must be included when S 2 reaches periastron with total space velocity $\beta \sim 10^{-2}$.

Doppler: $\quad z_{D}=\frac{1+\beta \cos \theta}{\sqrt{1-\beta^{2}}}-1$
Gravitational redshift: $\quad z_{\mathrm{grav}}=\frac{1}{\sqrt{1-2 M_{\cdot} / r_{\mathrm{em}}}}-1$

Setup

Corrections to the Newtonian model
 (GRAVITY Coll. 2018, Alexander 2005)

- Newtonian effect: the Roemer delay due to finite value of c
- Relativistic effects: the Doppler shift and the gravitational redshift $(G=c=1)$
- 1 Post Newtonian (PN) correction

Schwarzschild precession has been detected on S 2 motion at 8σ confidence level (GRAVITY Coll. 2020)

$$
a_{1 \mathrm{PN}}=f_{\mathrm{SP}} \frac{M_{\bullet}}{r^{2}}\left[\left(\frac{4 M_{\bullet}}{r}-v^{2}\right) \frac{r}{r}+4 \dot{r} v\right]
$$

where $f_{\mathrm{SP}}=1, r=r \hat{r}, v=(\dot{r} \hat{r}, r \dot{\theta} \hat{\theta}, r \dot{\phi} \sin \theta \hat{\phi}), v=|v|$

The equations of motion

From Euler-Lagrange equations: $\frac{d}{d t}\left(\frac{\partial \mathscr{L}}{\partial \dot{q}}\right)-\frac{\partial \mathscr{L}}{\partial q}=0$

$$
\longrightarrow\left\{\begin{array}{l}
\ddot{r}-r \dot{\theta}^{2}-r \sin ^{2} \theta \dot{\phi}^{2}+\frac{1}{r^{2}}-\Lambda\left(P_{1}^{\prime}(r)+P_{2}^{\prime}(r) \cos 2 \theta\right)=0 \\
2 r \dot{r} \sin ^{2} \theta \dot{\phi}+2 r^{2} \cos \theta \sin \theta \dot{\theta} \dot{\phi}+r^{2} \sin ^{2} \theta \ddot{\phi}=0 \\
2 r \dot{r} \dot{\theta}+r^{2} \ddot{\theta}-r^{2} \cos 2 \theta \dot{\theta} \dot{\phi}^{2}+2 \Lambda P_{2}(r) \sin 2 \theta \dot{\theta}=0
\end{array}\right.
$$

That we numerically integrate using an adaptive Runge-Kutta of order 4(5) and initial conditions given by the solution of Kepler's two body problem.

$$
\begin{aligned}
r\left(t_{0}\right) & =\frac{1-e^{2}}{1+e \cos \left(\phi\left(t_{0}\right)\right)} \\
\phi\left(t_{0}\right) & =2 \arctan \left(\sqrt{\frac{1+e}{1-e}} \tan \frac{\mathscr{E}\left(t_{0}\right)}{2}\right) \\
\dot{r}\left(t_{0}\right) & =\frac{2 \pi e \sin \left(\mathscr{E}\left(t_{0}\right)\right)}{1-e \cos \left(\mathscr{E}\left(t_{0}\right)\right)} \\
\dot{\phi}\left(t_{0}\right) & =\frac{2 \pi(1-e)}{\left(e \cos \left(\mathscr{E}\left(t_{0}\right)\right)-1\right)^{2}} \sqrt{\frac{1+e}{1-e}}
\end{aligned}
$$

Kepler's equation

$$
\mathscr{E}-e \sin \mathscr{E}-\mathscr{M}=0
$$

with

$$
\mathscr{M}=\frac{2 \pi}{P}\left(t_{0}-t_{p}\right)
$$

How emcee works

(Foreman-Mackey et al. 2013, Goodman \& Weare 2010)

- Step 1. It generates K walkers around any initial value of the parameters θ_{i}^{0} from $\mathcal{N}\left(\theta_{i}^{0}, \sigma\right)\left(\sigma=10^{-5}\right)$;
- Step 2. To update the position of a walker at $X_{k}(t)$, a walker X_{j} is randomly extracted from the complementary ensemble $S_{[k]}=\left\{X_{j}, \forall j \neq k\right\}$ and the new position is generated as $Y=X_{j}+Z\left[X_{k}(t)-X_{j}\right]$, where Z is drawn from $g(Z=z)$ defined as:

$$
g(z) \propto \begin{cases}\frac{1}{\sqrt{z}} & \text { if } z \in\left[\frac{1}{a}, a\right] \\ 0 & \text { otherwise }\end{cases}
$$

- Step 3. It computes $q=\min \left(1, Z^{N-1} \frac{p(Y)}{p\left(X_{k}(t)\right)}\right)$, where N is the number of parameters, for each walker.
- Step 4. It randomly extracts a variable $r \sim U[0,1]$. If $r \leq q$ then the move is accepted and $X_{k}(t+1) \rightarrow Y$. If $r>q$ the move is rejected and $X_{k}(t+1) \rightarrow X_{k}(t)$.

