Superradiance and Hawking evaporation in the string axiverse

University of Lisbon Presented by Filipe Serrano Collaboration with Dr. João Rosa and PhD student Marco Calzá

December 19, 2022

(University of Lisbon)

XV BH Workshop

December 19, 2022

• In string theory, there are a lot of massless fields which are zero modes of p-forms from Kaluza-Klein compactifications of extra dimensions (100-1000 fields).

- In string theory, there are a lot of massless fields which are zero modes of p-forms from Kaluza-Klein compactifications of extra dimensions (100-1000 fields).
- These massless scalar fields acquire a mass from anomalous *U*(1) symmetries which are broken via non-perturbative effects (SUSY breaking, internal symmetries)

- In string theory, there are a lot of massless fields which are zero modes of p-forms from Kaluza-Klein compactifications of extra dimensions (100-1000 fields).
- These massless scalar fields acquire a mass from anomalous *U*(1) symmetries which are broken via non-perturbative effects (SUSY breaking, internal symmetries)
- There are a lot of Axion-Like-Particles (ALPs) String Axiverse

- In string theory, there are a lot of massless fields which are zero modes of p-forms from Kaluza-Klein compactifications of extra dimensions (100-1000 fields).
- These massless scalar fields acquire a mass from anomalous *U*(1) symmetries which are broken via non-perturbative effects (SUSY breaking, internal symmetries)
- There are a lot of Axion-Like-Particles (ALPs) String Axiverse
- We considered an axiverse with 1 "heavy" ALP and an arbitrarily large number of "light" ALP species.

Superradiance (SR)

• It is a scattering process which occurs when a wave interacts with the rotating object while

 $\omega < m\Omega_H$

[Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell (2009)]

(1)

Superradiance (SR)

• We focused on the primary mode (n = 2, l = 1, m = 1).

$$\Gamma \approx \frac{1}{24} \left(\tilde{a} - 4\alpha_{\mu} \right) \alpha_{\mu}^{8} \mu \tag{2}$$

Superradiance (SR)

• We focused on the primary mode (n = 2, l = 1, m = 1).

$$\Gamma \approx \frac{1}{24} \left(\tilde{a} - 4\alpha_{\mu} \right) \alpha_{\mu}^{8} \mu \tag{2}$$

• The equations of motion for M, $\tilde{a} = J/M^2$ and N are

$$\frac{dM_{\rm sup}}{dt} = -\mu \frac{dN}{dt} \tag{3}$$

$$\frac{dJ_{sup}}{dt} = -\frac{dN}{dt} \Leftrightarrow \frac{d\tilde{a}}{dt} = -\frac{dN}{dt}\frac{1}{M^2}(1 - 2\tilde{a}\alpha_{\mu}) \qquad (4)$$
$$\frac{dN}{dt} = \Gamma(M, \tilde{a}, \mu)N \quad , \quad \Gamma(M, \tilde{a}, \mu) = 2\omega_I \qquad (5)$$

Hawking Evaporation (HE)

• Black Holes radiate thermal energy at late times,

$$\langle N_s \rangle = \sum_{l,m} \frac{Z_{l,m}^s}{e^{\frac{2\pi\omega}{\kappa}} - (-1)^{2s}}$$

(6)

(University of Lisbon)

XV BH Workshop

Hawking Evaporation (HE)

Black Holes radiate thermal energy at late times,

$$\langle N_s \rangle = \sum_{l,m} \frac{Z_{l,m}^s}{e^{\frac{2\pi\omega}{\kappa}} - (-1)^{2s}}$$
(6)

• The Black Hole depletes mass and angular momentum depending on the flux of particles being emitted,

$$egin{aligned} rac{dM}{dt} &= -rac{1}{M^2}f(ilde{a},M) \ rac{d ilde{a}}{dt} &= rac{ ilde{a}}{M^3}\left(-g(ilde{a},M)+2f(ilde{a},M)
ight) \end{aligned}$$

5/13

(7)

Depletion functions

• For a massive particle of spin s,

$$\begin{pmatrix} f_s \\ g_s \end{pmatrix} = -\frac{1}{2\pi} \Theta(T-\mu) \sum_{l,m} \int_0^\infty \frac{Z_{l,m}^s(\alpha_\omega, \tilde{a}) d\alpha_\omega}{e^{\frac{2\pi(\omega-m\Omega)}{\kappa}} - (-1)^{2s}} \begin{pmatrix} \alpha_\omega \\ m/\tilde{a} \end{pmatrix}$$
(8)

(University of Lisbon)

XV BH Workshop

December 19, 2022

• For a massive particle of spin s,

$$\begin{pmatrix} f_s \\ g_s \end{pmatrix} = -\frac{1}{2\pi} \Theta(T-\mu) \sum_{l,m} \int_0^\infty \frac{Z_{l,m}^s(\alpha_\omega, \tilde{a}) d\alpha_\omega}{e^{\frac{2\pi(\omega-m\Omega)}{\kappa}} - (-1)^{2s}} \begin{pmatrix} \alpha_\omega \\ m/\tilde{a} \end{pmatrix}$$
(8)

 In order to maximize the effects of Hawking evaporation, we considered Black Holes which are evaporating today - Primodial Black Holes.

• For a massive particle of spin s,

$$\binom{f_s}{g_s} = -\frac{1}{2\pi} \Theta(T-\mu) \sum_{l,m} \int_0^\infty \frac{Z_{l,m}^s(\alpha_\omega, \tilde{a}) d\alpha_\omega}{e^{\frac{2\pi(\omega-m\Omega)}{\kappa}} - (-1)^{2s}} \binom{\alpha_\omega}{m/\tilde{a}}$$
(8)

 In order to maximize the effects of Hawking evaporation, we considered Black Holes which are evaporating today - Primodial Black Holes.

 $M_0 = 10^{12} \text{ kg} \quad \tilde{a}_0 = 0.01 \tag{9}$

6/13

Gameplan

• Compute the purely evaporating system.

(University of Lisbon)

XV BH Workshop

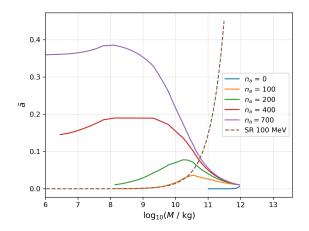
Gameplan

- Compute the purely evaporating system.
- Compute the intersection between the superradiant threshold and the "Regge" trajectory of the purely evaporating system.

Gameplan

- Compute the purely evaporating system.
- Compute the intersection between the superradiant threshold and the "Regge" trajectory of the purely evaporating system.
- Solve the new system of equations,

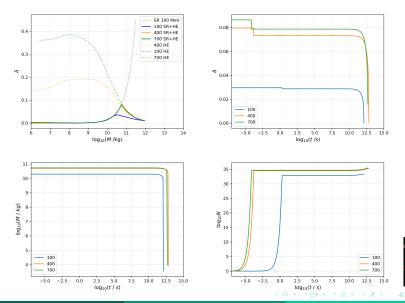
$$\frac{dM}{dt} = -\frac{f(\tilde{a})}{M^2} - \mu \Gamma N \tag{10}$$


$$\frac{d\tilde{a}}{dt} = \frac{\tilde{a}}{M^3} (-g(\tilde{a}) + 2f(\tilde{a})) - \frac{\Gamma N}{M^2}$$
(11)
$$\frac{dN}{dt} = \Gamma N$$
(12)

with initial conditions,

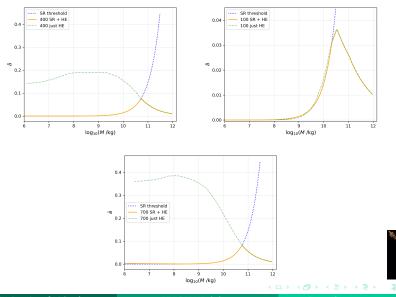
$$M_0 = M_t \text{ kg} \quad \tilde{a}_0 = \tilde{a}_t \quad N_0 = 1$$

Intersection


 Depending on the number of light ALP species, we have different trigger conditions.

(University of Lisbon)

XV BH Workshop


Evolution Results

(University of Lisbon)

XV BH Workshop

Regge trajectories

(University of Lisbon)

XV BH Workshop

December 19, 2022

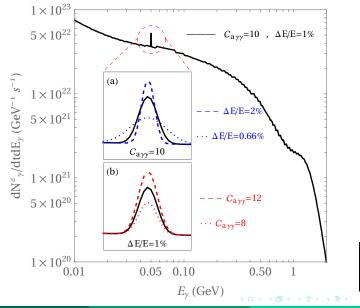
• Study the photon flux contributions from SR to the HE spectrum,

$$\mathcal{L} = \frac{C\alpha_{\rm EM}}{4\pi f_a} \theta \epsilon^{abcd} F_{ab} F_{cd} \tag{13}$$

(University of Lisbon)

XV BH Workshop

• Study the photon flux contributions from SR to the HE spectrum,


$$\mathcal{L} = \frac{C\alpha_{\rm EM}}{4\pi f_a} \theta \epsilon^{abcd} F_{ab} F_{cd} \tag{13}$$

• Not considering self interactions imposes an upper limit in the photon flux.

$$\frac{dN}{dtdE} < \frac{\alpha_{\mathsf{EM}}^2}{128\pi^3} |C_{\gamma\gamma}|^2 \frac{100}{\sqrt{3}} \frac{\sqrt{\tilde{a} - 4\alpha_{\mu}}}{\tilde{a}} \frac{E}{\Delta E}$$
(14)

Axion Decay Flux

(University of Lisbon)

XV BH Workshop

- A PBH with $M_0 = 10^{12}$ kg and $\tilde{a}_0 = 0.01$ will start evaporating, increasing \tilde{a} due to the high number of light ALP species.
- The number of light ALP species will dictate the black hole state at which the instability occurs.
- There will be a pseudo equilibrium state before the superradiant rate generates heavy ALPs until the the maximum number possible.
- The astrophysical signatures of the String Axiverse can be seen in both the HE spectrum and the Axion decay spectrum.

