Parameter estimation on boson-star binary signals (with a model-based coherent inspiral template)


XV Black Holes Workshop, Lisbon 19-12-2022
Massimo Vaglio (he/him/his) - massimo.vaglio@uniroma1.it

## Motvations for the work

- Gravitational waves allow to probe the nature of compact objects and to search for new physics
- The actual paradigm is that an astrophysical compact object, which is hevier than few solar masses, is a Black Hole (BH).


Main Idea: Build a coherent waveform for the inspiral of boson star binaries and test its ability to constrain their fundamental properties with observations from current and future interferometers

```
Work in collaboration with: Costantino Pacilio (Sapienza University of Rome), Andrea Maselli (GSSI Institute, L’Aquila), Paolo Pani (Sapienza University of Rome)
```


## Properties of Boson Stars

- Boson stars are solutions of the Einstein gravity, minimally coupled to a complex scalar field:

$$
L=-\frac{1}{2} g^{\mu \nu} \phi_{, \mu}^{*} \phi_{, v}-\frac{1}{2} V\left(|\phi|^{2}\right) \underset{\text { Eqns. }}{ } \quad G_{a b}=8 \pi T_{a b}, \quad \frac{1}{\sqrt{-g}} \partial_{a}\left(\sqrt{-g} g^{a b} \partial_{b} \phi\right)=\frac{d V\left(|\phi|^{2}\right)}{d|\phi|^{2}} \phi
$$

- Properties of strongly self-interacting BS with quartic coupling $\quad V\left(|\phi|^{2}\right)=m^{2}|\phi|^{2}+\frac{\lambda}{2}|\phi|^{4}\left(\lambda \gg m^{2}\right)$
- $M_{\max } \sim 0.06\left(\frac{\lambda^{\frac{1}{2}}}{m^{2}} M_{p}^{3} \checkmark M_{B}\right.$ reduced coupling
- Smaller compactness compared to BHs: $C_{B S} \sim 0.16-C_{B H}=0.5$


3D energy-density plot of a boson star

- Non-zero tidal deformability $\Lambda$ and spin-induced multipole moments $M_{2}, S_{3} \ldots$


## A coherent BS inspiral waveform model

- We want a coherent Post-Newtonian expanded waveform model in $v=(\pi M f)^{\frac{1}{3}}$ which consistently includes the corrections due to finite size effects:



## adrupole moment of boson stars (2PN)

- Multipole moments can be defined in General Relativity for asymptotically flat spacetimes (Geroch 1970, Hansen 1974, Thorne 1990...):

Multipole moments in Newtonian theory $\longleftrightarrow$ Flatness of the Euclidean space

- Stationary axysimmetric spacetime $\Rightarrow$
scalar mass moments $M_{0}, M_{2} \ldots$ and current moments $S_{1}, S_{3} \ldots$

$$
\begin{array}{ll}
\text { for a Kerr black hole } & M_{l}+i S_{l}=M^{l+1}(i \chi)^{l} \quad \chi=\frac{J}{M^{2}}, \quad M=M_{0} \\
M_{2} \\
\text { Not true for a aeneric combort ohiectl }
\end{array}
$$


$M_{2}>0$

$M_{2}<0$

## Quadrupole moment of boson stars (2PN)

- The plot shows $\kappa_{2}=-\frac{M_{2}}{\chi^{2} M^{3}}$ as a function of the dimensionless spin $\chi$ for different BS masses:

> | $M / M_{B}$ |
| :--- |
| $-0.020-0.030-0.040-0.050-.0 .080$ |
| $-. .0 .025-0.035 \ldots 0.045 \ldots 0.055$ |

For a Kerr Black Hole $k_{2}=1$


The multipolar structure of fast rotating boson stars: Massimo Vaglio, Costantino Pacilio, Andrea Maselli, Paolo Pani, arXiv:2203.07442 (2022)

$$
\mathrm{M}_{2}=-\kappa_{2}\left(\chi, M / M_{B}\right) \chi^{2} M^{3}
$$

## dal deformability of boson stars (5PN)

- The presence of the companion induces a quadrupole moment in the star as response to the external tidal field:

$$
\begin{gathered}
g_{00}=-1+\frac{2 M}{r}+\frac{3 Q_{i j}}{r^{3}}\left(n_{i} n_{j}-\frac{\delta_{i j}}{3}\right)+O\left(\frac{1}{r^{4}}\right)-\varepsilon_{i j} x_{i} x_{j}+O\left(r^{3}\right) \\
\underline{Q_{i j}=-\lambda_{T} \varepsilon_{i j}} \quad \lambda_{T} \text { is the tidal deformability }
\end{gathered}
$$

- The tidal deformability for boson stars can be obtained exploiting the relation:

$$
\frac{M}{M_{B}}=\frac{\sqrt{2}}{8 \sqrt{\pi}}\left[-0.828+\frac{20.99}{\log \Lambda}-\frac{99.1}{(\log \Lambda)^{2}}+\frac{149.7}{(\log \Lambda)^{3}}\right] \quad \Lambda=\Lambda\left(\frac{M}{M_{B}}\right)
$$

$$
\begin{array}{ll}
\text { where } \Lambda=\lambda_{T} / M^{5} & N . \text { Sennett et al., Phys. R } \\
& \text { D, } 96,2(2017) 024002
\end{array}
$$

## ameter estimation - Setting

- To test our waveform, we performed parameter estimation on injected signals

$$
\text { posterior } \quad p(\vec{\theta} \mid d)=\frac{\pi(\vec{\theta}) \mathcal{L}(d \mid \vec{\theta}, \mathcal{H})}{\int d^{m} \theta \pi(\vec{\theta}) \mathcal{L}(d \mid \vec{\theta}, \mathcal{H})} \quad \text { likelyhood }
$$

- In the analysis we fixed the extrinsic parameters: ra, dec sky localization angles $\iota$ system inclination angle $\boldsymbol{\psi}$ wave polarization angle
and marginalize over: $\boldsymbol{d} \boldsymbol{L}$ Luminosity distance

$$
\boldsymbol{t}_{\boldsymbol{c}}, \boldsymbol{\phi}_{\boldsymbol{c}} \text { time and phase at coalescence }
$$

- We considered only spins alligned or antialligned with $\vec{L}$ :

$$
\vec{\theta}=\left(\mathcal{M}, q, \chi_{1}, \chi_{1}, M_{B}\right)
$$

$$
\mathcal{M}=\left(M_{1} M_{2}\right)^{\frac{3}{5}} /\left(M_{1}+M_{2}\right)^{\frac{1}{5}} \quad q=M_{2} / M_{1} \quad \chi_{1 / 2}=\left(\vec{J}_{1 / 2} / M_{1 / 2}^{2}\right) \cdot \hat{L} \quad M_{B}=\left(\lambda^{\frac{1}{2}} / m^{2}\right) M_{p}^{3}
$$

## ameter estimation - Results



Injection and recovery of a signal with the Einstein Telescope (SNR = 130):

- $\mathcal{M}=5 M_{\odot}$
- $q=0.8$
- $M_{B}=115 M_{\odot}$
- $\chi_{1}=0.05$
- $\chi_{2}=0.35$
- $f_{\text {Roche }}=127 \mathrm{~Hz}$


## ameter estimation - Results



Injection and recovery of a signal with the Einstein Telescope (SNR = 130):

- $\mathcal{M}=10 M_{\odot}$
- $q=0.8$
- $M_{B}=255 M_{\odot}$
- $\chi_{1}=0.05$
- $\chi_{2}=0.35$
- $f_{\text {Roche }}=50 \mathrm{~Hz}$


## Conclusions and perspectives

We developed a coherent waveform template for the inspiral of rotating self-interacting BSs in the strong coupling limit :

- There is a strong correlation between the mass ratio and the fundamental coupling $M_{B}=\sqrt{\lambda} / \mathrm{m}^{2}$.
- With ET at SNR $\sim 100$ it is possible to constraint $M_{B}$ with $\sim 1 \%$ accuracy:

| $\left(m_{1}, m_{2}\right)$ | $\delta \mathcal{M}_{\text {rel }}$ | $\delta \eta_{\text {rel }}$ | $\delta M_{B_{r}}$ |  | $\delta \chi_{1_{\text {rel }}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $(6.4,5.2) M_{\odot}$ | $0.015 \%$ | $0.8 \%$ | $1.0 \%$ | $482_{\text {rel }}$ |  |
| $(12.8,10.3) M_{\odot}$ | $0.05 \%$ | $1.7 \%$ | $1.5 \%$ | $37 \%$ |  |

- Due to the low cutoff frequency, it is difficult to constraint binaries heavier than $\sim 10 M_{\odot}$.

That's why we need complete inspiral-merger-ringdown templates!

## Next steps and future works:

- Generalization to other BS's models: change $V\left(|\phi|^{2}\right)$, Vector BSs, universal relations...
- Model selection between different boson star models


## Backup Slide 1



## ckup Slide 1



- Injection and recovery of a simulated signal with $\mathcal{M}=10, q=0.8$ and $\chi_{1}=0.05, \chi_{2}=$ $0.35, M_{B}=250$.


## Maximum mass and ergoregions



Increasing the vaue of the winding number $s=\left(\frac{\sqrt{\lambda}}{m}\right)^{-1} \times n_{r}$, it is possible to exceed significantly the non-spinning maximum mass limit $M \sim 0.06 M_{B}$

The model allows for configurations featuring ergoregions in the (linearly) stable branch.


The multipolar structure of fast rotating boson stars: Massimo Vaglio, Costantino Pacilio, Andrea Maselli, Paolo Pani, arXiv:2203.07442 (2022)

## ivations for the work

- Stationary axysimmetric spacetime $\Rightarrow$ scalar mass moments $M_{0}, M_{2} \ldots$ and current moments $S_{1}, S_{3} \ldots$

$$
\text { for a Kerr black hole } \quad M_{l}+i S_{l}=M^{l+1}(i \chi)^{l} \quad \text { where } \quad \chi=\frac{J}{M^{2}}, \quad M=M_{0}
$$

The multipolar structure affects the dynamics of binary systems and their gravitational wave emission

$$
\text { E.g. } \quad h \sim \mathcal{A}(f) e^{i\left(\psi_{B H}(f)+\text { finite size corr }\right)}
$$

 Massimo Vaglio, Andrea Maselli, Paolo Pani. arXiv:2007.05264 (2020)

- The study of multipole moments can lead to the discovery of interesting properties (es: Love-Q relations)


## nilies of (rotating) Boson Stars

- Different families of BSs, correspond to different potenatials in the lagrangian:
(Neutron Stars: Equation Of State $\longrightarrow$ Boson Stars: Self-interactions V $\left(|\phi|^{2}\right)$ )
- Mini BSs $\quad V\left(|\phi|^{2}\right)=m^{2}|\phi|^{2} \quad M_{\max } \sim \frac{M_{p}^{2}}{m}$
$\begin{array}{ll}\text { - Massive BSs } & V\left(|\phi|^{2}\right)=m^{2}|\phi|^{2}+\lambda|\phi|^{4} \\ M_{\max } \sim \frac{M_{p}^{3}}{m^{2}} \lambda^{\frac{1}{2}} \\ M_{p}^{4}\end{array}$
- Solitonic BSs

$$
V(|\phi|)^{2}=m^{2}|\phi|^{2}\left(1-\frac{2|\phi|^{2}}{\sigma^{2}}\right) \quad M_{\max } \sim \frac{m_{p}^{4}}{m \sigma^{2}}
$$

- To have stationarity and axysimmetry the field must satisfy:



Normalized energy-density of a $B S$ in a transversal section

## Universal Relations for Boson Stars?

- Neutron Stars feature simple relations linking their moment of inertia, the tidal deformability and the quadrupole moment which do not depend sensitively on the star's internal structure.

I-Love-Q Relations in Neutron Stars and their Applications to Astrophysics, Gravitational Waves and Fundamental Physics - Kent Yagi and Nicolàs Yunes

- We found the reduced quadrupole and octupole moments are simply connected to the tidal deformability of the boson star




## Universal Relations for Boson Stars?

- The relation between $\kappa_{2}$ and $\sigma_{3}$ appears remarkably to be independent on the spin $\chi$

- These relations have many applications and are especially useful to break degeneracies among parameters that characterize gravitational waveforms.


## Integration and multipole moments






Cycle - $10-20-30-40-50-60-70-80-90-100-110-120-130-140-150$

| Coordinates | $q=r /(1+r)$, | $\mu=\cos \theta$ | $q, \mu \in[0,1]$ |
| :--- | :---: | :---: | :--- |
| Grid | $n_{q} \times n_{\mu}$ | Compactified |  |
| Derivatives | - | Fixed equally spaced |  |
| Integration | - | Five points central |  |

- Mass and current moments $\left\{M_{0}, M_{2} \ldots\right\},\left\{S_{1}, S_{3} \ldots\right\}$ can be read off:

$$
\rho(r, \mu)=\sum_{n=0}^{\infty}-2 \frac{M_{2 n}}{r^{2 n+1}} P_{2} n(\mu)+\text { higher orders }
$$

$$
\omega(r, \mu)=\sum_{n=1}^{\infty}-\frac{2}{2 n-1} \frac{S_{2 n-1}}{r^{2 n+1}} \frac{P_{2 n-1}^{1}(\mu)}{\sin \theta}+\text { higher orders }
$$

## nsistency with previous results

- Our findings about the quadrupole moments agree with previous results, when using the same grid $n_{q} \times$ $n_{\mu}=1600 \times 160$, but there is a deviation when $n_{\mu}$ is increased up to the saturation value $n_{\mu} \sim 20000$.

$$
\begin{gathered}
M / M_{B} \\
--0.02-0.03-0.04-.0 .05--0.06
\end{gathered}
$$




The dashed lines correspond to the values reported in F. D. Ryan, Phys. Rev. D 55, 6081 (1997)

## consistent field method

- The equations can be solved iteratively:


$$
\text { Es: } \quad \rho=-\frac{1}{4 \pi} e^{-\frac{\gamma}{2}} \int_{0}^{\infty} d r^{\prime} \int_{-1}^{1} d \mu^{\prime} \int_{0}^{2 \pi} d \phi^{\prime} r^{\prime} S_{\rho}\left(r^{\prime}, \mu^{\prime}\right) \frac{1}{\left|r-r^{\prime}\right|}
$$

Automatically satisfies aymptotic flatness conditions for reasonable sources!

## Dependence on the integration grid

- Due to numerical erros, we found a non-zero value of $M_{2}^{(o f f)} \equiv M_{2}(\chi=0)$

In the plots (top panels):

$$
\begin{aligned}
& k_{2}^{(\text {raw })}=M_{2}^{(\text {raw })} /\left(\chi^{2} M^{3}\right) \\
& k_{2}^{(o f f)}=M_{2}^{(o f f)} /\left(\chi^{2} M^{3}\right)
\end{aligned}
$$

and their percentage difference (bottom panels), for fixed $M=0.04 M_{B}, n_{q}=$ 1600 and two values of $\chi$.

- Extracting the quadrupole moments for slow spinning configurations requires more angular precision.



## Energy-density plot



Normalized energy-density of a BS in a transversal section

## Backerp Slide - Scalar field

- The metric can be expressed in the Lewis-Papapetrou coordinates:

$$
d s^{2}=-e^{\gamma+\rho} d t^{2}+e^{2 \alpha}\left(d r^{2}+r^{2} d \theta^{2}\right)+e^{\gamma-\rho} r^{2} \sin \theta^{2}(d \phi-\omega d t)^{2}
$$

- The scalar field in the inner region satisfies: $\quad\left(-g^{t t} \Omega^{2}+2 g^{t \varphi} \Omega s-g^{\varphi \varphi} s^{2}-m^{2}\right) \phi-\lambda|\phi|^{2} \phi=0$

$$
\text { But in the tail region } \quad \phi \sim 0 \Rightarrow|\phi|^{2}=\operatorname{Max}\left[0,\left(-g^{t t} \Omega^{2}+2 g^{t \varphi} \Omega s-g^{\varphi \varphi} S^{2}-m^{2}\right) / \lambda\right]
$$

- Substituting the metric coefficients:

$$
|\phi|^{2}=\operatorname{Max}\left[0, \frac{1}{\lambda}\left(\frac{(\Omega-s \omega)^{2}}{e^{\gamma+\rho}}-\frac{e^{\gamma-\rho} s^{2}}{r^{2} \sin \theta^{2}}-m^{2}\right)\right]
$$



Rotating BSs are shaped like doughnuts!

## Backup Slide - Coordinate rescaling

- It is possible to get rid of the coupling constants trought the following rescalings:

$$
t=\frac{\lambda^{\frac{1}{2}}}{m^{2}} \tilde{t} \quad s=\frac{\lambda^{\frac{1}{2}}}{m} \tilde{s} \quad r=\frac{\lambda^{\frac{1}{2}}}{m^{2}} \tilde{r} \quad \Omega=m \widetilde{\Omega} \quad \epsilon=\frac{m^{4}}{\lambda} \tilde{\epsilon} \quad \omega=\frac{m^{2}}{\lambda^{\frac{1}{2}}} \widetilde{\omega} \quad P=\frac{m^{4}}{\lambda} \tilde{P} \quad|\phi|^{2}=\frac{m^{2}}{\lambda}|\tilde{\phi}|^{2}
$$

- Consequently we have the following change in the relevant expressions:

$$
\begin{gathered}
\tilde{P}=\frac{1}{4}|\tilde{\phi}|^{4} \quad \tilde{\epsilon}=|\tilde{\phi}|^{2}+\frac{3}{4}|\tilde{\phi}|^{4} \quad|\tilde{\phi}|^{2}=\operatorname{Max}\left[0, \frac{(\widetilde{\Omega}-\widetilde{s \widetilde{\omega}})^{2}}{e^{\gamma+\rho}}-\frac{e^{\gamma-\rho} \widetilde{s^{2}}}{\widetilde{r^{2}} \sin \theta^{2}}-m^{2}\right] \\
d \widetilde{s^{2}}=-e^{\gamma+\rho} d \widetilde{t^{2}}+e^{2 \alpha}\left(\widetilde{r^{2}}+\widetilde{r^{2}} d \theta^{2}\right)+e^{\gamma-\rho} \widetilde{r^{2}} \sin \theta^{2}(d \phi-\widetilde{\omega} d \tilde{t})^{2}
\end{gathered}
$$

- Physical quantities can be derived multiplying the rescaled ones by: $\frac{\lambda^{\frac{1}{2}}}{m^{2}} \equiv M_{B}$


## Backup Slide - The equations

- The Einstein equations can be rewritten as:

$$
\Delta\left(\rho e^{\frac{\gamma}{2}}\right)=S_{\rho}(r, \mu) \quad\left(\Delta+\frac{1}{r} \frac{\partial}{\partial r}-\frac{1}{r^{2}} \mu \frac{\partial}{\partial \mu}\right) \gamma e^{\frac{\gamma}{2}}=S_{\gamma}(r, \mu) \quad\left(\Delta+\frac{2}{r} \frac{\partial}{\partial r}-\frac{2}{r^{2}} \mu \frac{\partial}{\partial \mu}\right) \omega e^{\frac{(\gamma-2 \rho)}{2}}=S_{\omega}(r, \mu)
$$

where $\mu=\cos \theta$ and I removed the 'tilde'.

- The first can be easily inverted:

$$
\rho=-\frac{1}{4 \pi} e^{-\frac{\gamma}{2}} \int_{0}^{\infty} d r^{\prime} \int_{-1}^{1} d \mu^{\prime} \int_{0}^{2 \pi} d \phi^{\prime} r^{\prime} S_{\rho}\left(r^{\prime}, \mu^{\prime}\right) \frac{1}{\left|r-r^{\prime}\right|}
$$

Automatically satisfies aymptotic flatness conditions for reasonable sources!

## Backup Slide - The equations

- Expanding the $1 /\left|r-r^{\prime}\right|$ term and repeating for the other equations:

$$
\begin{gathered}
\rho(r, \mu)=-e^{-\gamma / 2} \sum_{n=0}^{\infty} P_{2 n}(\mu)\left[\frac{1}{r^{2 n+1}} \int_{0}^{r} d r^{\prime}\left(r^{\prime}\right)^{2 n+2} \int_{0}^{1} d \mu^{\prime} P_{2 n}\left(\mu^{\prime}\right) S_{\rho}\left(r^{\prime}, \mu^{\prime}\right)+r^{2 n} \int_{r}^{\infty} d r^{\prime} \frac{1}{\left.\left(r^{\prime}\right)^{2 n-1} \int_{0}^{1} d \mu^{\prime} P_{2 n}\left(\mu^{\prime}\right) S_{\rho}\left(r^{\prime}, \mu^{\prime}\right)\right]}\right. \\
\gamma(r, \mu)=-\frac{2}{\pi} e^{-\gamma / 2} \sum_{n=1}^{\infty} \frac{\sin [(2 n-1) \theta]}{(2 n-1) \sin \theta}\left[\frac{1}{r^{2 n}} \int_{0}^{r} d r^{\prime}\left(r^{\prime}\right)^{2 n+1} \int_{0}^{1} d \mu^{\prime} \sin \left[(2 n-1) \theta^{\prime}\right] S_{\gamma}\left(r^{\prime}, \mu^{\prime}\right)+r^{2 n-2} \int_{r}^{\infty} d r^{\prime} \frac{1}{\left.\left(r^{\prime}\right)^{2 n-3} \int_{0}^{1} d \mu^{\prime} \sin \left[(2 n-1) \theta^{\prime}\right] S_{\gamma}\left(r^{\prime}, \mu^{\prime}\right)\right]}\right. \\
\omega(r, \mu)=-e^{\rho-\gamma / 2} \sum_{n=1}^{\infty} \frac{P_{2 n-1}^{1}(\mu)}{2 n(2 n-1) \sin \theta}\left[\frac{1}{r^{2 n+1}} \int_{0}^{r} d r^{\prime}\left(r^{\prime}\right)^{2 n+2} \int_{0}^{1} d \mu^{\prime} \sin \theta^{\prime} P_{2 n-1}^{1}\left(\mu^{\prime}\right) S_{\omega}\left(r^{\prime}, \mu^{\prime}\right)+r^{2 n-2} \int_{r}^{\infty} d r^{\prime} \frac{1}{\left.\left(r^{\prime}\right)^{2 n-3} \int_{0}^{1} d \mu^{\prime} \sin \theta^{\prime} P_{2 n-1}^{1}\left(\mu^{\prime}\right) S_{\omega}\left(r^{\prime} \mu^{\prime}\right)\right]}\right.
\end{gathered}
$$

## Backup Slide - The equations

- The sources are complicated expressions of the the metric functions and their derivatives :

$$
\begin{aligned}
& S_{\rho}(r, \mu)=e^{\gamma / 2}\left(8 \pi e^{2 \alpha}(\epsilon+P) \frac{1+v^{2}}{1-v^{2}}+r^{2}\left(1-\mu^{2}\right) e^{-2 \rho}\left(\omega_{r}^{2}+\frac{1-\mu^{2}}{r^{2}} \omega_{\mu}^{2}\right)+\frac{1}{r} \gamma_{r}-\frac{\mu}{r^{2}} \gamma_{\mu}+\frac{1}{2} \rho\left[16 \pi e^{2 \alpha} P-\gamma_{r}\left(\frac{1}{2} \gamma_{r}+\frac{1}{r}\right)-\frac{1}{r^{2}} \gamma_{\mu}\left(\frac{1-\mu^{2}}{2} \gamma_{, \mu}-\mu\right)\right]\right) \\
& S_{\gamma}(r, \mu)=e^{\gamma / 2}\left[16 \pi e^{2 \alpha} P+\frac{\gamma}{2}\left(16 \pi e^{2 \alpha} P-\frac{1}{2} \gamma_{r}^{2}-\frac{1-\mu^{2}}{2 r^{2}} \gamma_{\mu}^{2}\right)\right] \\
& S_{\omega}(r, \mu)=e^{\gamma / 2-\rho}\left(-16 \pi e^{2 \alpha+\rho} \frac{v(\epsilon+P)}{\left(1-v^{2}\right) r \sin \theta}+\omega\left[-8 \pi e^{2 \alpha} \frac{\left(1+v^{2}\right) \epsilon+2 v^{2} P}{1-v^{2}}-\frac{1}{r}\left(2 \rho_{, r}+\frac{1}{2} \gamma_{r}\right)+\frac{\mu}{r^{2}}\left(2 \rho_{, \mu}+\frac{1}{2} \gamma_{, \mu}\right)+\rho_{r}^{2}-\frac{1}{4} \gamma_{, r}^{2}\right.\right. \\
& \left.\left.+\frac{1-\mu^{2}}{r^{2}}\left(\rho_{, \mu}^{2}-\frac{1}{4} \gamma_{\mu}^{2}\right)-r^{2}\left(1-\mu^{2}\right) e^{-2 \rho}\left(\omega_{r}^{2}+\frac{1-\mu^{2}}{r^{2}} \omega_{, \mu}^{2}\right)\right]\right)
\end{aligned}
$$

where: $\quad v=\frac{\tilde{s}}{\widetilde{\Omega}-\tilde{s} \widetilde{\omega}} \frac{e^{\rho}}{\tilde{r} \sin \theta} \quad$ is the proper velocity with respect to the ZAMO

## Backerp Slide - The algorithm



Change in the $\rho$ function after the first iterations of the method

## nary Boson Star signal

- Multipole moments enter in the PN expansion in $v=(\pi M f)^{\frac{1}{3}}$ of the inspiral signal:


Gravitational-wave detectors as particle-physics laboratories: Constraining scalar interactions with a coherent inspiral model of boson star binaries, Costantino Pacilio, Massimo Vaglio, Andrea Maselli, Paolo Pani. Phys.Rev. D 102 (2020) 8, 083002

## Backup Slide - Mass scale

- We want to explore the possibility of constraining the BS coupling with future observations:

$$
\begin{aligned}
& M_{\max } \approx 0.06\left(1+0.76 \chi^{2}\right) M_{B} \Rightarrow \\
& \quad M_{\max }(\chi \sim 0) \approx 0.06 M_{B} \approx 0.06 \frac{\sqrt{\lambda}}{m^{2}} \approx 0.06 \frac{\sqrt{\lambda \hbar}}{m_{S}^{2}} M_{P}^{3} \approx 10^{5} M_{\odot} \sqrt{\lambda \hbar}\left(\frac{\mathrm{MeV}}{m_{S}}\right)^{2}
\end{aligned}
$$

We can cover the whole spectrum of sources for LISA and ET varying $\lambda$ and $m_{s}$

## Backup Slide - Parameter Estimation

- The expression for the quadrupole moment as a funtion of mass, spin of the BS:

$$
Q=-\kappa\left(\chi, M / M_{B}\right) \chi^{2} M^{3}
$$

can be used within parameter estimation to measure directly the effective coupling from GWs observation of BS binaries :

$$
\vec{\theta}=\left(\mathcal{A}, t_{c}, \phi_{c}, \log \mathcal{M}, \log \eta, \chi_{s}, \chi_{a}, M_{B}\right)
$$

- We used a Fisher matrix approach and a Post Newtonian expanded waveform to estimate the uncertainty with which $M_{B}$ can be measured by LISA and ET in the following scenario:

Individual masses
$\left(M_{1}, M_{2}\right) \sim\left(0.05 M_{B}, 0.06 M_{B}\right) \quad 0.06 M_{B}=\left\{\begin{array}{c}1-100 M_{\odot} E T \\ 10^{4}-10^{6} M_{\odot} \text { LISA }\end{array} \quad\left(\chi_{1}, \chi_{2}\right)=\left\{\begin{array}{c}(0.1,0) \\ (0.6,0.3) \\ (0.9,0.8)\end{array}\right.\right.$

## Backup Slide - The Waveform

- Post Newtonian expansion in $\quad v=(\pi M f)^{\frac{1}{3}}$

$$
\begin{gathered}
\mathcal{A}(f)=\frac{M_{t}^{2}}{D_{L}} \sqrt{\frac{\pi \eta}{30}}\left(\pi M_{t} f\right)^{-7 / 6} \quad \text { Newtonian approx } \\
\psi(f)=2 \pi f t_{c}-\phi_{c}-\frac{\pi}{4}+v^{-5}\left(\sum_{n=0}^{7} \alpha_{n} v^{n}\right) \quad \begin{array}{ll}
\text { at 3.5PN } & \begin{array}{l}
\text { C.K. Mishra et.al, Phys. Rev. } \\
\text { D, } 93,8 \text { (2016), 084054 }
\end{array}
\end{array}
\end{gathered}
$$

$$
+ \text { quadrupole corrections at 2PN, 3PN and 3.5PN }
$$

Krishnendu et.al, Phys. Rev. Lett.,119,9 (2017) 091101

+ tidal corrections at 5PN and 6PN

Lackey and L. Wade, Phys. Rev. D, 91, (2015) 4043002

- $\quad \psi(f)=\psi_{B H}(f)+\psi_{\kappa}(f)+\psi_{\Lambda}(f)$
$\psi_{\kappa}=-\frac{75}{64} \frac{\left(\kappa_{1} M_{1}^{2} \chi_{1}^{2}+\kappa_{2} M_{2}^{2} \chi_{2}^{2}\right)}{M_{1} M_{2}}\left(\pi M_{t} f\right)^{-1 / 3}$

$$
\psi_{\Lambda}=-\frac{117}{256 \eta} \widetilde{\Lambda}\left(\pi M_{t} f\right)^{5 / 3}
$$

## Backup Slide - Tidal deformability

- To include the tidal deformability in the waveform we exploited the relation:

$$
\begin{array}{r}
\frac{M}{M_{B}}=\frac{\sqrt{2}}{8 \sqrt{\pi}}\left[-0.828+\frac{20.99}{\log \Lambda}-\frac{99.1}{(\log \Lambda)^{2}}+\frac{149.7}{(\log \Lambda)^{3}}\right] \\
\text { N. Sennett et al., Phys. Rev. D, 96, } 2(2017) 024002
\end{array}
$$

where $\Lambda=\lambda_{T} / M^{5}$ and $\lambda_{T}$ is defined as $Q_{i j}=-\lambda_{T} \varepsilon_{i j}$

- $\quad \Lambda$ will affect the waveform through an effective combination of the values of each BS

$$
\widetilde{\Lambda}=\frac{16}{13}\left[\left(1+\frac{12}{q}\right) \frac{M_{1}^{5}}{M_{t}^{5}} \Lambda_{1}+(1+12 q) \frac{M_{2}^{5}}{M_{t}^{5}} \Lambda_{2}\right]
$$

## Backup Slide - Constraining scalar interactions

- The errors on $M_{B}$ for ET and LISA are at the percent and sub-percent level in the most optimistic configurations:
$\operatorname{ET}\left(D_{L}=500 M p c\right)$




## Backup Slide - The initial data

- An obvious initial guess for $\rho, \Upsilon, \omega$ and $\alpha$ is a solution for a non-spinning BS with the same mass.

$$
d \widetilde{s^{2}}=-e^{\gamma+\rho} d \widetilde{t^{2}}+e^{2 \alpha}\left(\widetilde{d r^{2}}+\widetilde{r^{2}} d \theta^{2}\right)+e^{\gamma-\rho} \widetilde{r^{2}} \sin \theta^{2}(d \phi-\widetilde{\omega} d \tilde{t})^{2}
$$

- In the non-spinning limit one has:

$$
\widetilde{\omega} \rightarrow 0 \quad \gamma(\tilde{r}, \theta), \rho(\tilde{r}, \theta), \alpha(\tilde{r}, \theta) \rightarrow \gamma(\tilde{r}), \rho(\tilde{r}), \alpha(\tilde{r}) \quad \text { and } \quad e^{\gamma-\rho}=e^{2 \alpha}
$$

- The metric beocmes:

$$
d \widetilde{s^{2}}=-e^{2(\rho(\tilde{r})+\alpha(\tilde{r}))} d \widetilde{t^{2}}+e^{2 \alpha(\tilde{r})}\left(\widetilde{d r^{2}}+\widetilde{r^{2}} d \theta^{2}+\widetilde{r^{2}} \sin \theta^{2} d \phi^{2}\right)
$$

This is not the common choice when dealing with spherically symmetric problems!

$$
d s^{2}=-e^{v(r)} d t^{2}+e^{u(r)} d r^{2}+r^{2} d \theta^{2}+r^{2} \sin \theta^{2} d \phi^{2}
$$

## Backup Slide - The initial data

- Comparing the two metrics: $\left\{\begin{array}{l}d \widetilde{s^{2}}=-e^{2(\rho(\tilde{r})+\alpha(\tilde{r}))} d \widetilde{t^{2}}+e^{2 \alpha(\tilde{r})}\left(d \widetilde{r^{2}}+\widetilde{r^{2}} d \theta^{2}+\widetilde{r^{2}} \sin \theta^{2} d \phi^{2}\right) \\ d s^{2}=-e^{v(r)} d t^{2}+e^{u(r)} d r^{2}+r^{2} d \theta^{2}+r^{2} \sin \theta^{2} d \phi^{2}\end{array}\right.$
one finds:

$$
\text { 1) } e^{2 \alpha(\tilde{r})} d \widetilde{r^{2}}=e^{u(r)} d r^{2} \quad \text { 2) } e^{2 \alpha(\tilde{r})} \widetilde{r^{2}}=r^{2} \text { and dividing term by term: }
$$

$$
\frac{d \tilde{r}}{r}=\frac{e^{\frac{u(r)}{2}}}{r} d r
$$

$$
\Rightarrow \quad \tilde{r}(r)=\exp \left[\int_{r_{0}}^{r} \frac{e^{\frac{u\left(r^{\prime}\right)}{2}}}{r^{\prime}} d r^{\prime}\right] \cdot c
$$

- Finally: $\quad \alpha(\tilde{r})=\log \frac{r(\tilde{r})}{\tilde{r}} \quad \gamma(\tilde{r})=\rho(\tilde{r})+2 \alpha(\tilde{r}) \quad \rho(\tilde{r})=v(r(\tilde{r}))-\frac{1}{2} \alpha(\tilde{r})$


## Backup Slide - Multipole moments

$\rho(r, \mu)=\sum_{n=0}^{\infty}-2 \frac{M_{2 n}}{r^{2 n+1}} P_{2} n(\mu)+$ higher orders $\quad \omega(r, \mu)=\sum_{n=1}^{\infty}-\frac{2}{2 n-1} \frac{S_{2 n-1}}{r^{2 n+1}} \frac{P_{2 n-1}^{1}(\mu)}{\sin \theta}+$ higher orders

$$
M_{2 n}=\frac{1}{2} \int_{0}^{r} d r^{\prime}\left(r^{\prime}\right)^{2 n+2} \int_{0}^{1} d \mu^{\prime} P_{2 n}\left(\mu^{\prime}\right) S_{\rho}\left(r^{\prime}, \mu^{\prime}\right)
$$

$$
S_{2 n-1}=\frac{1}{4 n} \int_{0}^{r} d r^{\prime}\left(r^{\prime}\right)^{2 n+2} \times \int_{0}^{1} d \mu^{\prime} \sin \theta^{\prime} P_{2 n-1}^{1}\left(\mu^{\prime}\right) S_{\omega}\left(r^{\prime}, \mu^{\prime}\right)
$$

- Correction factors to correctly match the Geroch-Hansen multipole moments

| $\chi$ | $\kappa_{2}$ | $\kappa_{2}^{\text {new }}$ | $\operatorname{corr}[\%]$ |
| :---: | :--- | :--- | :---: |
| 0.1 | 22.4 | 22.1 | $-1.4 \%$ |
| 0.2 | 15.7 | 15.6 | $-0.5 \%$ |
| 0.5 | 15.2 | 15.3 | $\lesssim+0.1 \%$ |
| 0.8 | 16.4 | 16.4 | $\lesssim+0.1 \%$ |
| 1,0 | 17.4 | 17.5 | $\lesssim+0.1 \%$ |
| 1.3 | 19.3 | 19.4 | $\lesssim+0.1 \%$ |
| 2.0 | 24.6 | 24.6 | $\lesssim+0.05 \%$ |

Table 1: Reduced quadrupole moment correction factors for different value of the spin $\chi$ and $M=0.06$.

