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Boson stars overview



Boson stars

• In General Relativity, complex boson fields can become localized due to
their own self gravity.

• Boson stars are self-gravitating configurations of such fields.
• If made of ultralight bosons (scalar or vector) they can have masses in the
astrophysical black hole mass range (specially if they have self-interactions)

• They are candidates for black holes mimickers.
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Boson stars

• Since they are not collapsed objects, they have different optical properties
from BHs.

• BS are optically transparent and don’t have an horizon.
• For certain levels of compactness they might exhibit light rings or ISCOs.
• Some supposed black hole mergers could be well modelled as two boson
stars collisions Bustillo et al. (2021).
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Why self-interacting boson stars?

• BS with self-interactions, have larger masses, putting them in the stellar
mass range.

• Such stars have increased pressure which can avoid the collapse into a BH.
• Elementary scalar particles have self-interactions, such as the Higgs field or
the hypothetical QCD axions.
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Self-interacting scalar boson stars

• Self-interacting BS are solutions to the Einstein-Klein-Gordon.
• Considering a quartic self-interaction the action is

S[gµν,Φ,Φ∗] =
∫
M

[
R
16π − 1

2

(
Φ∗
,µΦ
,µ + U(Φ∗Φ)

)] √
−gd4x,

where U(Φ∗Φ) = µ2 |Φ |2 + λ
2 |Φ |4, where µ is the inverse reduced Compton

wavelength of the particle and λ is the self-interaction coupling constant.
• We define now Λ = λ/4πµ2 and use units where µ = 1.
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Excited states

• In spherical symmetry we have an
infinite number of solutions each
labelled by the number of radial
nodes n in |Φ(t, r) |.

• Similar to the H atom, we have the
fundamental (n = 0) and excited
states (n > 0).

• Excited stars are unstable, either
decaying or collapsing into a BH.

• These models might have
interesting properties that impact
GW emission.
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Figure 1: Candidate stable branches.
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Excited states

• The maximum mass doesn’t
guarantee their stability.
Non-axisymmetric instabilities
might have a role to play.

• This requires the numerical
evolution of these models.

• They can be made stable with
self-interactions up to n = 10
(Sanchis-Gual et al. (2022) n = 1
stars).
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Dynamical evolution and stability



Evolution and generic outcomes

• Using the static spherical symmetric solutions to the EKG equations, we can
evolve such models in time, using numerical truncation error as a
perturbation.

• We analyse the evolution for a time window of 104 in our units.
• Depending on the value of ω or Λ the stars collapse to black holes, decay to
a lower n state, or become stable.

• It is possible that at the end the star isn’t yet fully relaxed.
• We consider stars to be stable at the end the radial profile coincides with
the initial one, notwithstanding the existence of oscillations in intermediate
times.
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Collapse to black hole
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Figure 2: Radial profile of n = 5, Λ = 400,
ω = 0.92.

Figure 3: Evolution of n = 5, Λ = 400,
ω = 0.92.
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Stable solution

0 20 40 60 80 100
r

0

1

2

3

4

5

6

|Φ
|

×10−3

t = 0
t = 6000
t = 9750

Figure 4: Radial profile of n = 5, Λ = 700,
ω = 0.92.

Figure 5: Evolution of n = 5, Λ = 700,
ω = 0.92.
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Threshold of stability
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Figure 6: The Λthreshold as a function of n.

• For every studied model, after a
certain value of Λ all the stars are
stable.

• This happens for all n and ω, each
model having a different Λthreshold.

• In fact there is a quadratic relation
between Λthreshold and n:

Λω=0.90 = 1.31 + 49.79n + 15.84n2,R2 = 0.9997
Λω=0.92 = 7.82 + 36.16n + 14.97n2,R2 = 0.9997.
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Astrophysical features



Compactness

• Since the self-interaction is
repulsive, and the mass increases
with Λ, the compactness increases
as expected.

• It seems that it reaches an
asymptotic value for large Λ.

• For large Λ, stars with lower n seem
more compact.
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Figure 7: Compactness as a function of Λ.
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Compactness

• The maximum compactness in the
stable branch for n = 0, was
determined by Amaro-Seoane et al.
(2010) to be C ≈ 0.16.

• This is consistent so far with our
results.

• If a star is compact enough special
orbits like the ISCO (at R = 6M)
might appear.

• However, our boson stars aren’t
compact enough, since
C−1
max = R/M ≈ 10 > 6.
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Galactic rotation curves

• As is well known, the rotational velocity of stars in galaxies do not follow
the expected Keplerian behaviour vrot(r) '

√
GM(r)/r.

• Instead we find that the rotational velocity increases way past the region
which contains the luminous matter.

• One hypothesis is that the galactic dark matter halos can be modelled by a
boson star, first noted by Lee and Koh (1996).
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Galactic rotation curves

• Near the nodes, vrot(r) increases in
a Keplerian way since the particle is
in a vacuum.

• This is followed by a decrease since
there the particle is surrounded by
matter.

• In the region with the nodes we find
that vrot increases almost linearly,
with some oscillations.

• This might explain qualitatively, at
least, the observed linear increase
in the galactic rotational velocities.
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Figure 8: Velocity rotation curves for n = 10,
ω = 0.92. 14

Boson stars overview Dynamical evolution and stability Astrophysical features Final remarks References



Final remarks



Main results

• Spherical symmetric scalar excited boson stars can be made stable at least
up to n = 10.

• This just depends on how strong the repulsive self-interaction is.
• The compactness of this stars reaches an asymptotic value as a function of
Λ and seems to sliglty increase with n.

• There are no ISCOs. Stable circular orbits are allowed up to the very centre.
• Galactic rotation curves can be explained, at least qualitatively, by a scalar
boson star.
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In the future

• Since these stars are stable, we could consider them in astrophysical
scenarios.

• One interesting possibility is the collision of these objects and obtaining the
respective GW signal.

• This is important to elaborate templates of GW signals to compare with
observational evidence.
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Stable Boson star
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Figure 9: Summary of results for boson star model n = 2, Λ = 150 and ω = 0.92.



Angular velocity of particles

• The angular velocity of a particle
orbiting a boson star is given, in
Schwarzschild coordinates as
Ω (rorbit) =

√
(eF0/r) (deF0/dr)

��
rorbit
.

• If there is a maximum in Ω (r), this
can quench the MRI of accretion
disks, creating an effective shadow
Olivares et al., 2020.

• Instead of a Keplerian behaviour
for Ω (r), we instead obtain
plateaus in between the nodes.
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Figure 10: Angular velocity as a function of
rorbit for n = 6, Λ = 800, ω = 0.92.



Angular velocity of particles

• At the location of the nodes, Ω (r)
increases in a Keplerian way since it
is in a vacuum.

• At the location of the plateaus, the
behaviour is different since the
particle is surrounded by matter. 0 25 50 75 100 125 150
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Figure 10: Angular velocity as a function of
rorbit for n = 6, Λ = 800, ω = 0.92.



Angular velocity of particles
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Figure 11: Angular velocity as a function of Rorbit for n = 6, ω = 0.92 for several Λ (left).
Angular velocity as a function of Rorbit for Λ = 300, ω = 0.92 for several n (right). Same
qualitative behaviour for ω = 0.90.
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