XV Black Holes Workshop

Virial identities in relativistic gravity

Alexandre M. Pombo

Introduction

Introduction: Virial Theorem

- The virial theorem relates the average kinetic and potential energy
- It allows the average kinetic energy to be calculated even for very complicated systems
- The theorem has found applications in several areas

- The virial theorem relates the average kinetic and potential energy
- It allows the average kinetic energy to be calculated even for very complicated systems
- The theorem has found applications in several areas

Introduction: Virial Theorem

- The virial theorem relates the average kinetic and potential energy
- It allows the average kinetic energy to be calculated even for very complicated systems
- The theorem has found applications in several areas

Virial identity

- Integral identities that are virial-like
- In field theory rather than particle mechanics
- It is obtained from scaling arguments
- Computed independently from the equations of motion
- Applicable to stationary spacetimes
- We present an approach for curved spacetimes

Virial identity

- Integral identities that are virial-like
- In field theory rather than particle mechanics
- It is obtained from scaling arguments
- Computed independently from the equations of motion
- Applicable to stationary spacetimes
- We present an approach for curved spacetimes

Virial identity

- Integral identities that are virial-like
- In field theory rather than particle mechanics
- It is obtained from scaling arguments
- Computed independently from the equations of motion
- Applicable to stationary spacetimes
- We present an approach for curved spacetimes

Virial identity

- Integral identities that are virial-like
- In field theory rather than particle mechanics
- It is obtained from scaling arguments
- Computed independently from the equations of motion
- Applicable to stationary spacetimes
- We present an approach for curved spacetimes

Virial identity

- Integral identities that are virial-like
- In field theory rather than particle mechanics
- It is obtained from scaling arguments
- Computed independently from the equations of motion
- Applicable to stationary spacetimes
- We present an approach for curved spacetimes

Virial identity

- Integral identities that are virial-like
- In field theory rather than particle mechanics
- It is obtained from scaling arguments
- Computed independently from the equations of motion
- Applicable to stationary spacetimes
- We present an approach for curved spacetimes

Importance

Virial

Identity

Recipe

Ingredients:

- Action S
- Metric ansatz $g_{\mu \nu}$
- Matter ansatz
- Gibbons-Hawking-York term (gravity)

Ingredients:

- Action S
- Metric ansatz $g_{\mu \nu}$
- Matter ansatz
- Gibbons-Hawking-York term (gravity)

Material:

- Derrick's scaling argument
- Hamilton's principle
- Love and patience

Step-by-step:

Step-by-step: Derrick's scaling argument
Model
S

Step-by-step: Derrick's scaling argument
Model
metric/matter ansatz X

Step-by-step: Derrick's scaling argument
Model

metric/matter ansatz X
$\int d \theta_{\alpha} \int \mathcal{L} d r$

Step-by-step: Derrick's scaling argument
Model

metric/matter ansatz X
$\int d \theta_{\alpha} \int \mathcal{L} d r>S^{\mathrm{eff}}$

Step-by-step: Derrick's scaling argument

Model

Scaling

metric/matter ansatz X
$\int d \theta_{\alpha} \int \mathcal{L} d r>S^{\mathrm{eff}} \quad r \rightarrow \lambda r$

Step-by-step: Derrick's scaling argument

Model

Scaling

metric/matter ansatz X
$\int d \theta_{\alpha} \int \mathcal{L} d r>S^{\mathrm{eff}} \quad r \rightarrow \lambda r>\begin{aligned} X & \rightarrow X_{\lambda} \\ \frac{d X}{d r} & \rightarrow \frac{1}{\lambda} \frac{d X_{\lambda}}{d r}\end{aligned}$

Step-by-step: Derrick's scaling argument

Model

Scaling

metric/matter ansatz X
$\int d \theta_{\alpha} \int \mathcal{L} d r>S^{\text {eff }} \quad r \rightarrow \lambda r \quad \begin{gathered}X \rightarrow X_{\lambda} \\ \frac{d X}{d r} \rightarrow \frac{1}{\lambda} \frac{d X_{\lambda}}{d r}\end{gathered} d r \rightarrow \lambda d r$

Step-by-step: Derrick's scaling argument

Model

Scaling

metric/matter ansatz X
$\int d \theta_{\alpha} \int \mathcal{L} d r>S^{\text {eff }} \quad r \rightarrow \lambda r \Rightarrow \begin{gathered}X \rightarrow X_{\lambda} \\ \frac{d X}{d r} \rightarrow \frac{1}{\lambda} \frac{d X_{\lambda}}{d r}\end{gathered} d r \rightarrow \lambda d r>S_{\lambda}^{\text {eff }}$

Step-by-step: Derrick's scaling argument

Model

Scaling

Hamilton's principle

S

metric/matter ansatz X

$$
\left.\frac{d \mathcal{S}_{\lambda}^{\mathrm{eff}}}{d \lambda}\right|_{\lambda=1}=0
$$

$\int d \theta_{\alpha} \int \mathcal{L} d r$

Step-by-step: Derrick's scaling argument

Model

Scaling

Hamilton's principle

S

metric/matter ansatz X

Preparation

Derrick's argument

- The action of a real scalar field

Derrick's argument

- The action of a real scalar field

$$
\mathcal{S}^{\Phi}=\int d^{4} x\left[-\Phi_{, \mu} \Phi^{, \mu}-U\right]
$$

Derrick's argument

- The action of a real scalar field

$$
\begin{gathered}
\mathcal{S}^{\Phi}=\int d^{4} x\left[-\Phi_{, \mu} \Phi^{, \mu}-U\right] \\
S_{0} \equiv \int d^{3} x \dot{\Phi}^{2}, \quad S_{1} \equiv \int d^{3} x(\nabla \Phi)^{2}, \quad S_{2} \equiv \int d^{3} x U
\end{gathered}
$$

Derrick's argument

- The action of a real scalar field

$$
\begin{gathered}
\mathcal{S}^{\Phi}=\int d^{4} x\left[-\Phi_{, \mu} \Phi^{, \mu}-U\right] \\
S_{0} \equiv \int d^{d} x \dot{\Phi}^{2}, \quad S_{1} \equiv \int d^{3} x(\nabla \Phi)^{2}, \quad S_{2} \equiv \int d^{3} x U
\end{gathered}
$$

Derrick's argument

- The scaled configuration

$$
r \rightarrow \tilde{r}=\lambda r
$$

Derrick's argument

- The scaled configuration

$$
r \rightarrow \tilde{r}=\lambda r
$$

$$
\Phi_{\lambda}(\mathbf{r})=\Phi(\lambda \mathbf{r})
$$

Derrick's argument

- The scaled configuration

$$
\begin{gathered}
r \rightarrow \tilde{r}=\lambda r \\
\Phi_{\lambda}(\mathbf{r})=\Phi(\lambda \mathbf{r}) \quad \Phi_{\lambda}^{\prime}=\frac{\Phi^{\prime}}{\lambda}
\end{gathered}
$$

Derrick's argument

- The scaled configuration

$$
\begin{gathered}
r \rightarrow \tilde{r}=\lambda r \\
\Phi_{\lambda}(\mathbf{r})=\Phi(\lambda \mathbf{r}) \quad \Phi_{\lambda}^{\prime}=\frac{\Phi^{\prime}}{\lambda} \quad d r \rightarrow \lambda d r
\end{gathered}
$$

Derrick's argument

- The scaled configuration

$$
\begin{gathered}
r \rightarrow \tilde{r}=\lambda r \\
\Phi_{\lambda}(\mathbf{r})=\Phi(\lambda \mathbf{r}) \quad \Phi_{\lambda}^{\prime}=\frac{\Phi^{\prime}}{\lambda} \quad d r \rightarrow \lambda d r \\
\left.\left(\frac{d S_{\lambda}}{d \lambda}\right)\right|_{\lambda=1}=0
\end{gathered}
$$

Derrick's argument

- The scaled configuration

$$
\begin{gathered}
r \rightarrow \tilde{r}=\lambda r \\
\Phi_{\lambda}(\mathbf{r})=\Phi(\lambda \mathbf{r}) \quad \Phi_{\lambda}^{\prime}=\frac{\Phi^{\prime}}{\lambda} \quad d r \rightarrow \lambda d r \\
\left.\left(\frac{d S_{\lambda}}{d \lambda}\right)\right|_{\lambda=1}=0 \\
\int d^{3} x(\nabla \Phi)^{2}=-3 \int d^{3} x U
\end{gathered}
$$

Derrick's argument

- The scaled configuration

$$
\begin{gathered}
r \rightarrow \tilde{r}=\lambda r \\
\Phi_{\lambda}(\mathbf{r})=\Phi(\lambda \mathbf{r}) \quad \Phi_{\lambda}^{\prime}=\frac{\Phi^{\prime}}{\lambda} \quad d r \rightarrow \lambda d r \\
\left.\left(\frac{d S_{\lambda}}{d \lambda}\right)\right|_{\lambda=1}=0 \\
\int d^{3} x(\nabla \Phi)^{2}=-3 \int d^{3} x \square
\end{gathered}
$$

Derrick's argument

- The scaled configuration

$$
\begin{gathered}
r \rightarrow \tilde{r}=\lambda r \\
\Phi_{\lambda}(\mathbf{r})=\Phi(\lambda \mathbf{r}) \quad \Phi_{\lambda}^{\prime}=\frac{\Phi^{\prime}}{\lambda} \quad d r \rightarrow \lambda d r \\
\left.\left(\frac{d S_{\lambda}}{d \lambda}\right)\right|_{\lambda=1}=0 \\
\int d^{3} x(\nabla \Phi)^{2}=-3 \int d^{3} x \square
\end{gathered}
$$

Plating

Axial Symmetry
arXiv:2206.02813

Derrick's argument: Q-balls

- The action of a complex scalar field

Derrick's argument: Q-balls

- The action of a complex scalar field

$$
\mathcal{S}^{\Phi}=\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right]
$$

Derrick's argument: Q-balls

- The action of a complex scalar field

$$
\begin{gathered}
\mathcal{S}^{\Phi}=\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right] \\
\Phi=\phi(r, \theta) e^{-i \omega t+i m \varphi}
\end{gathered}
$$

Derrick's argument: Q-balls

- The action of a complex scalar field

$$
\begin{gathered}
\mathcal{S}^{\Phi}=\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right] \\
\Phi=\phi(r, \theta) e^{-i \omega t+i m \varphi}
\end{gathered}
$$

Derrick's argument: Q-balls

- The action of a complex scalar field

$$
\mathcal{S}^{\Phi}=\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right]
$$

$$
\Phi=\phi(r, \theta) e^{-i \omega t+i m \varphi}
$$

Derrick's argument: Q-balls

- The action of a complex scalar field

$$
\mathcal{S}^{\Phi}=\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right]
$$

$$
\Phi=\phi(r, \theta) e^{-i \omega t+i m \varphi}
$$

$\int_{0}^{\pi} d \theta \int_{0}^{+\infty} d r r^{2} \sin \theta\left[-3 \omega^{2} \phi^{2}+\phi^{\prime 2}+\frac{\phi_{, \theta}^{2}}{r^{2}}+\frac{m^{2} \phi^{2}}{r^{2} \sin ^{2} \theta}+3 U\right]=0$

Derrick's argument: Q-balls

- The action of a complex scalar field

$$
\mathcal{S}^{\Phi}=\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right]
$$

$$
\Phi=\phi(r, \theta) e^{-i \omega t+i m \varphi}
$$

$\int_{0}^{\pi} d \theta \int_{0}^{+\infty} d r r^{2} \sin \theta\left[-3 \omega^{2} \phi^{2}+\phi^{\prime 2}+\frac{\phi_{, \theta}^{2}}{r^{2}}+\frac{m^{2} \phi^{2}}{r^{2} \sin ^{2} \theta}+3 U\right]=0$

Derrick's argument: Q-balls

- The action of a complex scalar field

$$
\mathcal{S}^{\Phi}=\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right]
$$

$\int_{0}^{\pi} d \theta \int_{0}^{+\infty} d r r^{2} \sin \theta\left[-3 \omega^{2} \phi^{2}+\phi^{2}+\frac{\phi_{, \theta}^{2}}{r^{2}}+\frac{m^{2} \phi^{2}}{r^{2} \sin ^{2} \theta}+3 U\right]=0$

Derrick's argument: Q-balls

- The action of a complex scalar field

$$
\mathcal{S}^{\Phi}=\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right]
$$

$\int_{0}^{\pi} d \theta \int_{0}^{+\infty} d r r^{2} \sin \theta-3 \omega^{2} \phi^{2}+\phi^{\prime 2}+\frac{\phi_{, \theta}^{2}}{r^{2}}+\frac{m^{2} \phi^{2}}{r^{2} \sin ^{2} \theta}+3 U=0$

Derrick's argument: Q-balls

- The action of a complex scalar field

$$
\mathcal{S}^{\Phi}=\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right]
$$

$$
\Phi=\phi(r, \theta) e^{-i \omega t+i m \varphi}
$$

$$
\left.\int_{0}^{\pi} d \theta \int_{0}^{+\infty} d r r^{2} \sin \theta--3 \omega^{2} \phi^{2}+\phi^{\prime 2}+\frac{\phi_{,}^{2}}{r^{2}}+\frac{m^{2} \phi^{2}}{r^{2} \sin ^{2} \theta}+3 U\right]=0
$$

Derrick's argument: Gravity

- The gravitational action

$$
\mathcal{S}_{g r a v}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y}
$$

Derrick's argument: Gravity

- The gravitational action

$$
\begin{gathered}
\mathcal{S}_{\text {grav }}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y} \\
=\frac{1}{4} \int_{\mathcal{M}} d^{4} x \sqrt{-g} R+\frac{1}{2} \int_{\partial \mathcal{M}} d^{3} x \sqrt{-\gamma}\left(K-K_{0}\right)
\end{gathered}
$$

$r=0$

Derrick's argument: Gravity

- The gravitational action

$$
\begin{gathered}
\mathcal{S}_{\text {grav }}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y} \\
=\frac{1}{4} \int_{\mathcal{M}} d^{4} x \sqrt{-g} R+\frac{1}{2} \int_{\partial \mathcal{M}} d^{3} x \sqrt{-\gamma}\left(K-K_{0}\right)
\end{gathered}
$$

$r=0$
R
$r=+\infty$

Derrick's argument: Gravity

- The gravitational action

$$
\begin{gathered}
\mathcal{S}_{\text {grav }}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y} \\
=\frac{1}{4} \int_{\mathcal{M}} d^{4} x \sqrt{-g} R+\frac{1}{2} \int_{\partial \mathcal{M}} d^{3} x \sqrt{-\gamma}\left(K-K_{0}\right)
\end{gathered}
$$

$r=0$
R
$r=+\infty$

Derrick's argument: Gravity

- The gravitational action

$$
\begin{gathered}
\mathcal{S}_{\text {grav }}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y} \\
=\frac{1}{4} \int_{\mathcal{M}} d^{4} x \sqrt{-g} R+\frac{1}{2} \int_{\partial \mathcal{M}} d^{3} x \sqrt{-\gamma}\left(K-K_{0}\right)
\end{gathered}
$$

$r=+\infty$

Derrick's argument: Gravity

- The gravitational action

$$
\begin{gathered}
\mathcal{S}_{\text {grav }}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y} \\
=\frac{1}{4} \int_{\mathcal{M}} d^{4} x \sqrt{-g} R+\frac{1}{2} \int_{\partial \mathcal{M}} d^{3} x \sqrt{-\gamma}\left(K-K_{0}\right)
\end{gathered}
$$

$$
r=+\infty
$$

Derrick's argument: Gravity

- The gravitational action

$$
\begin{gathered}
\mathcal{S}_{\text {grav }}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y} \\
=\frac{1}{4} \int_{\mathcal{M}} d^{4} x \sqrt{-g} R+\frac{1}{2} \int_{\partial \mathcal{M}} d^{3} x \sqrt{-\gamma}\left(K-K_{0}\right)
\end{gathered}
$$

Derrick's argument: Gravity

- The gravitational action

$$
\begin{gathered}
\mathcal{S}_{g r a v}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y} \\
=\frac{1}{4} \int_{\mathcal{M}} d^{4} x \sqrt{-g} R+\frac{1}{2} \int_{\partial \mathcal{M}} d^{3} x \sqrt{-\gamma}\left(K-K_{0}\right)
\end{gathered}
$$

Derrick's argument: Gravity

- The gravitational action

$$
\begin{gathered}
\mathcal{S}_{\text {grav }}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y} \\
=\frac{1}{4} \int_{\mathcal{M}} d^{4} x \sqrt{-g} R+\frac{1}{2} \int_{\partial \mathcal{M}} d^{3} x \sqrt{-\gamma}\left(K-K_{0}\right)
\end{gathered}
$$

The boundary term is needed since the gravitational Lagrangian density, R, contains second order derivatives of the metric tensor

Derrick's argument: Black hole

- In the presence of an horizon

Derrick's argument: Black hole

- In the presence of an horizon

$$
r \rightarrow \tilde{r}=r_{H}+\lambda\left(r-r_{H}\right)
$$

Derrick's argument: Kerr

- Let us pick the gravitational action again:

$$
\mathcal{S}_{\text {grav }}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y}
$$

Derrick's argument: Kerr

- Let us pick the gravitational action again:

$$
\mathcal{S}_{\text {grav }}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y}
$$

Derrick's argument: Kerr

- Let us pick the gravitational action again:

$$
\mathcal{S}_{\text {grav }}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y} \quad \Longrightarrow \quad \int_{0}^{\pi} d \theta \int_{r_{H}}^{+\infty} d r I_{R}=I_{G H Y}
$$

Derrick's argument: Kerr

- Let us pick the gravitational action again:

$$
\mathcal{S}_{\text {grav }}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y} \quad \rightleftarrows \quad \int_{0}^{\pi} d \theta \int_{r_{H}}^{+\infty} d r I_{R}=I_{G H Y}
$$

Derrick's argument: Kerr

- Let us pick the gravitational action again:

$$
\mathcal{S}_{\text {grav }}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y} \quad \rightleftarrows \int_{0}^{\pi} d \theta \int_{r_{H}}^{+\infty} d r I_{R}=I_{G H Y}
$$

Derrick's argument: Kerr

- Let us pick the gravitational action again:

$$
\mathcal{S}_{\text {grav }}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y} \longrightarrow \int_{0}^{\pi} d \theta \int_{r_{H}}^{+\infty} d r I_{R}=I_{G H Y}
$$

Derrick's argument: Kerr

- Let us pick the gravitational action again:

$$
\begin{aligned}
& \mathcal{S}_{\text {grav }}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y} \quad \int_{0}^{\pi} d \theta \int_{r_{H}}^{+\infty} d r I_{R}=I_{G H Y} \\
& d s^{2}=-e^{2 F_{0}} N d t^{2}+e^{2 F_{1}}\left(\frac{d r^{2}}{N}+r^{2} d \theta^{2}\right)+e^{2 F_{2}} r^{2} \sin ^{2} \theta(d \varphi-W d t)^{2}
\end{aligned}
$$

Derrick's argument: Kerr

- Let us pick the gravitational action again:

$$
\begin{aligned}
& \mathcal{S}_{g r a v}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y} \quad \int_{0}^{\pi} d \theta \int_{r_{H}}^{+\infty} d r I_{R}=I_{G H Y} \\
& d s^{2}=-e^{2 F_{0}} N d t^{2}+e^{2 F_{1}}\left(\frac{d r^{2}}{N}+r^{2} d \theta^{2}\right)+e^{2 F_{2}} r^{2} \sin ^{2} \theta(d \varphi-W d t)^{2}
\end{aligned}
$$

$$
N=1-\frac{r_{H}}{r}
$$

Derrick's argument: Kerr

- Let us pick the gravitational action again:

$$
\begin{aligned}
& \mathcal{S}_{\text {grav }}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y} \quad \int_{0}^{\pi} d \theta \int_{r_{H}}^{+\infty} d r I_{R}=I_{G H Y} \\
& d s^{2}=-e^{2 F_{0}} N d t^{2}+e^{2 F_{1}}\left(\frac{d r^{2}}{N}+r^{2} d \theta^{2}\right)+e^{2 F_{2}} r^{2} \sin ^{2} \theta(d \varphi-W d t)^{2}
\end{aligned}
$$

$$
N=1-\frac{r_{H}}{r}
$$

Black Holes: Kerr

- The Gibbons-Hawking-York comes as

$$
d s^{2}=-e^{2 F_{0}} N d t^{2}+e^{2 F_{1}}\left(\frac{d r^{2}}{N}+r^{2} d \theta^{2}\right)+e^{2 F_{2}} r^{2} \sin ^{2} \theta(d \varphi-W d t)^{2}
$$

Black Holes: Kerr

- The Gibbons-Hawking-York comes as

$$
d s^{2}=-e^{2 F_{0}} N d t^{2}+e^{2 F_{1}}\left(\frac{d r^{2}}{N}+r^{2} d \theta^{2}\right)+e^{2 F_{2}} r^{2} \sin ^{2} \theta(d \varphi-W d t)^{2}
$$

$$
F_{0} \approx \frac{c_{t}}{r}+\cdots \quad F_{1}=F_{2} \approx-\frac{c_{t}}{r}+\cdots \quad W \approx-\frac{c_{t}}{r^{3}}+\cdots
$$

Black Holes: Kerr

- The Gibbons-Hawking-York comes as

$$
d s^{2}=-e^{2 F_{0}} N d t^{2}+e^{2 F_{1}}\left(\frac{d r^{2}}{N}+r^{2} d \theta^{2}\right)+e^{2 F_{2}} r^{2} \sin ^{2} \theta(d \varphi-W d t)^{2}
$$

$$
F_{0} \approx \frac{c_{t}}{r}+\cdots \quad F_{1}=F_{2} \approx-\frac{c_{t}}{r}+\cdots \quad W \approx-\frac{c_{t}}{r^{3}}+\cdots
$$

Black Holes: Kerr

- The Gibbons-Hawking-York comes as

$$
d s^{2}=-e^{2 F_{0}} N d t^{2}+e^{2 F_{1}}\left(\frac{d r^{2}}{N}+r^{2} d \theta^{2}\right)+e^{2 F_{2}} r^{2} \sin ^{2} \theta(d \varphi-W d t)^{2}
$$

$$
F_{0} \approx \frac{c_{t}}{r}+\cdots \quad F_{1}=F_{2} \approx-\frac{c_{t}}{r}+\cdots \quad W \approx-\frac{c_{t}}{r^{3}}+\cdots
$$

$$
\begin{aligned}
& \sqrt{-\gamma}=e^{F_{0}+F_{1}+F_{2}} \sqrt{N} r^{2} \sin \theta, \\
& K=\frac{e^{-F_{1}}}{r \sqrt{N}}\left[\frac{r N^{\prime}}{2}+2 N+N r\left(F_{0}^{\prime}+F_{1}^{\prime}+F_{2}^{\prime}\right)\right] \\
& K_{0}=2 \frac{e^{-F_{1}}}{r},
\end{aligned}
$$

Black Holes: Kerr

- The Gibbons-Hawking-York comes as

$$
d s^{2}=-e^{2 F_{0}} N d t^{2}+e^{2 F_{1}}\left(\frac{d r^{2}}{N}+r^{2} d \theta^{2}\right)+e^{2 F_{2}} r^{2} \sin ^{2} \theta(d \varphi-W d t)^{2}
$$

$$
F_{0} \approx \frac{c_{t}}{r}+\cdots \quad F_{1}=F_{2} \approx-\frac{c_{t}}{r}+\cdots \quad W \approx-\frac{c_{t}}{r^{3}}+\cdots
$$

$$
\sqrt{-\gamma}=e^{F_{0}+F_{1}+F_{2}} \sqrt{N} r^{2} \sin \theta,
$$

$$
K=\frac{e^{-F_{1}}}{r \sqrt{N}}\left[\frac{r N^{\prime}}{2}+2 N+N r\left(F_{0}^{\prime}+F_{1}^{\prime}+F_{2}^{\prime}\right)\right],
$$

$$
I_{G H Y}=4 c_{t}
$$

$$
K_{0}=2 \frac{e^{e^{-F_{1}}}}{r},
$$

Black Holes: Kerr

- The Gibbons-Hawking-York comes as

$$
d s^{2}=-e^{2 F_{0}} N d t^{2}+e^{2 F_{1}}\left(\frac{d r^{2}}{N}+r^{2} d \theta^{2}\right)+e^{2 F_{2}} r^{2} \sin ^{2} \theta(d \varphi-W d t)^{2}
$$

$$
F_{0} \approx \frac{c_{t}}{r}+\cdots \quad F_{1}=F_{2} \approx-\frac{c_{t}}{r}+\cdots \quad W \approx-\frac{c_{t}}{r^{3}}+\cdots
$$

$$
\sqrt{-\gamma}=e^{F_{0}+F_{1}+F_{2}} \sqrt{N} r^{2} \sin \theta,
$$

$$
K=\frac{e^{-F_{1}}}{r \sqrt{N}}\left[\frac{r N^{\prime}}{2}+2 N+N r\left(F_{0}^{\prime}+F_{1}^{\prime}+F_{2}^{\prime}\right)\right],
$$

$$
I_{G H Y}=4 c_{t}
$$

$$
K_{0}=2 \frac{e^{-F_{1}}}{r},
$$

Black Holes: Kerr

- The Einstein-Hilbert:

Black Holes: Kerr

- The Einstein-Hilbert:

$$
I_{R}=\frac{\sin \theta}{2} e^{F_{1}-F_{0}}[\cdots]
$$

Black Holes: Kerr

- The Einstein-Hilbert:

$$
I_{R}=\frac{\sin \theta}{2} e^{F_{1}-F_{0}} \underbrace{[\cdots]}_{\text {Complicated }}
$$

Black Holes: Kerr

- The Einstein-Hilbert:

$$
I_{R}=\frac{\sin \theta}{2} e^{F_{1}-F_{0}} \underbrace{[\cdots]}
$$

Complicated

$$
\int_{0}^{\pi} d \theta \int_{r_{H}}^{+\infty} d r I_{R}=4 c_{t}
$$

Black Holes: Kerr

- The Einstein-Hilbert:

$$
I_{R}=\frac{\sin \theta}{2} e^{F_{1}-F_{0}} \underbrace{[\cdots]}
$$

Complicated

$$
\int_{0}^{\pi} d \theta \int_{r_{H}}^{+\infty} d r I_{R}=4 c_{t}
$$

$$
I_{G H Y}=4 c_{t}
$$

Black Holes: Kerr

- The Einstein-Hilbert:

$$
I_{R}=\frac{\sin \theta}{2} e^{F_{1}-F_{0}} \underbrace{[\cdots]}
$$

Complicated

$$
\int_{0}^{\pi} d \theta \int_{r_{H}}^{+\infty} d r I_{R}=4 c_{t}
$$

$$
I_{G H Y}=4 c_{t}
$$

Black Holes: Kerr

- The Einstein-Hilbert:

$$
I_{R}=\frac{\sin \theta}{2} e^{F_{1}-F_{0}} \underbrace{[\cdots]}
$$

Complicated

$$
\int_{0}^{\pi} d \theta \int_{r_{H}}^{+\infty} d r I_{R}=4 c_{t}
$$

$$
I_{G H Y}=4 c_{t}
$$

Black Holes: Kerr

- The Einstein-Hilbert:

$$
I_{R}=\frac{\sin \theta}{2} e^{F_{1}-F_{0}} \underbrace{[\cdots]}
$$

Complicated

$$
\begin{aligned}
\int_{0}^{\pi} d \theta \int_{r_{H}}^{+\infty} d r I_{R} & =4 c_{t} \\
I_{G H Y} & =4 c_{t}
\end{aligned}
$$

Black Holes: Hairy Kerr

- Numerical metric ansatz:
$\mathcal{S}^{\Phi}=\mathcal{S}_{g r a v}+\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right]$

Black Holes: Hairy Kerr

- Numerical metric ansatz:
$\mathcal{S}^{\Phi}=\mathcal{S}_{g r a v}+\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right]$

Black Holes: Hairy Kerr

- Numerical metric ansatz:
$\mathcal{S}^{\Phi}=\mathcal{S}_{g r a v}+\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right]$

Black Holes: Hairy Kerr

- Numerical metric ansatz:
$\mathcal{S}^{\Phi}=\mathcal{S}_{g r a v}+\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right]$

Black Holes: Hairy Kerr

- Numerical metric ansatz:
$\mathcal{S}^{\Phi}=\mathcal{S}_{g r a v}+\int d^{4} x \underbrace{\sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right]}$

Black Holes: Hairy Kerr

- Numerical metric ansatz:

$$
\mathcal{S}^{\Phi}=\mathcal{S}_{g r a v}+\int d^{4} x \underbrace{\sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right]}
$$

$$
\begin{aligned}
& e^{F_{0}+F_{2}} \sin \theta\left[r^{2} N^{2} \phi_{, r}^{2}+\phi_{, \theta}^{2}+e^{2\left(F_{1}-F 2\right)} \frac{m^{2} \phi^{2}}{\sin ^{2} \theta}\right. \\
& \left.+e^{2 F_{1}} r^{2}\left\{\left(1-\frac{2 r_{H}}{3 r}\right) U-e^{-2 F_{0}}(\omega-m W)^{2} \phi^{2}\right\}\right]
\end{aligned}
$$

Black Holes: Hairy Kerr

- Numerical metric ansatz:

$$
\mathcal{S}^{\Phi}=\mathcal{S}_{g r a v}+\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right]
$$

$$
\begin{aligned}
& I_{R}=-\frac{1}{2} \sin \\
& \theta e^{F_{4}-F_{0}}\left(-2 r_{H} e^{2 F_{0}}\left(2\left(\left(r-r_{H}\right)\left(F_{0}^{\prime \prime}+F_{1}^{\prime \prime}+F_{2}^{\prime \prime}\right)+F_{2}^{\prime}+\left(r-r_{H}\right) F_{2}^{\prime 2}\right)+F_{0}^{\prime}\left(2\left(r-r_{H}\right) F_{2}^{\prime}+3\right)+2\left(r-r_{H}\right) F_{0}^{\prime 2}+F_{1}^{\prime}\right)\right. \\
& +2 e^{2 F_{0}}\left(2\left(r\left(r-r_{H}\right)\left(F_{0}^{\prime \prime}+F_{1}^{\prime \prime}+F_{2}^{\prime \prime}\right)+r\left(r-r_{H}\right) F_{2}^{\prime 2}+\left(3 r-2 r_{H}\right) F_{2}\right)-F_{0}^{\prime}\left(-2 r\left(r-r_{H}\right) F_{2}^{\prime}-4 r+r_{H}\right)+2 \hat{\hat{F}}_{0}+2 r\left(r-r_{H}\right) F_{0}^{\prime 2}+2 \hat{F}_{0}\right. \\
& \left.\left.+\left(2 r-r_{H}\right) F_{1}^{\prime}+2 \hat{\hat{F}}_{2}+2 \hat{F}_{2}\left(\hat{F}_{2}+2 \cot \theta\right)\right)+4 e^{2 F_{0}} \hat{F}_{0}\left(\hat{F}_{2}+\cot \theta\right)+4 e^{2 F_{0}} \hat{F}_{0}^{2}+r^{3} r_{H} \sin ^{2} \theta e^{2 F_{2}} W^{\prime 2}-3 r^{2} \sin ^{2} \theta e^{2 F_{2}}\left(r\left(r-r_{H}\right) W^{\prime 2}+\hat{W}^{2}\right)\right)
\end{aligned}
$$

Black Holes: Hairy Kerr

- Numerical metric ansatz:

Plating

Convenient metric

arXiv:2207.12451

Derrick's argument: Black holes

- Let us introduce the a new metric ansatz:

$$
d s^{2}=-F_{0}^{2} d t^{2}+H F_{1}^{2} d r^{2}+\left(r-r_{H}\right)^{2} F_{1}^{2} d \theta^{2}+F_{2}^{2}\left(d \varphi-F_{W} d t\right)^{2}
$$

Derrick's argument: Black holes

- Let us introduce the a new metric ansatz:

$$
d s^{2}=-F_{0}^{2} d t^{2}+H F_{1}^{2} d r^{2}+\left(r-r_{H}\right)^{2} F_{1}^{2} d \theta^{2}+F_{2}^{2}\left(d \varphi-F_{W} d t\right)^{2}
$$

$$
\mathcal{S}_{g r a v}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y}
$$

Derrick's argument: Black holes

- Let us introduce the a new metric ansatz:

$$
d s^{2}=-F_{0}^{2} d t^{2}+H F_{1}^{2} d r^{2}+\left(r-r_{H}\right)^{2} F_{1}^{2} d \theta^{2}+F_{2}^{2}\left(d \varphi-F_{W} d t\right)^{2}
$$

$$
\mathcal{S}_{\text {grav }}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y}
$$

Derrick's argument: Black holes

- Let us introduce the a new metric ansatz:

$$
d s^{2}=-F_{0}^{2} d t^{2}+H F_{1}^{2} d r^{2}+\left(r-r_{H}\right)^{2} F_{1}^{2} d \theta^{2}+F_{2}^{2}\left(d \varphi-F_{W} d t\right)^{2}
$$

$$
\mathcal{S}_{\text {grav }}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y}
$$

Event horizon

$$
\int_{0}^{\pi} d \theta \int_{r_{H}}^{+\infty} d r I_{R}=I_{G H Y}
$$

Derrick's argument: Black holes

- Let us introduce the a new metric ansatz:

$$
d s^{2}=-F_{0}^{2} d t^{2}+H F_{1}^{2} d r^{2}+\left(r-r_{H}\right)^{2} F_{1}^{2} d \theta^{2}+F_{2}^{2}\left(d \varphi-F_{W} d t\right)^{2}
$$

$$
\mathcal{S}_{\text {grav }}=\mathcal{S}_{E H}+\mathcal{S}_{G H Y}
$$

Event horizon

$$
\int_{0}^{\pi} d \theta \int_{r_{H}}^{+\infty} d r I_{R}=I_{G H Y}
$$

Derrick's argument: Black holes

- The Gibbons-Hawking-York term:

$$
d s^{2}=-F_{0}^{2} d t^{2}+H F_{1}^{2} d r^{2}+\left(r-r_{H}\right)^{2} F_{1}^{2} d \theta^{2}+F_{2}^{2}\left(d \varphi-F_{W} d t\right)^{2}
$$

$$
\begin{aligned}
& \sqrt{-\gamma}=\frac{1}{\sqrt{H} F_{1}}, \\
& K=\frac{1}{\left(r-r_{H}\right) F_{0} F_{1}^{2} F_{2} \sqrt{H}}\left[\left(r-r_{H}\right) F_{1} F_{2} F_{0}^{\prime}+F_{0}\left(\left(r-r_{H}\right) F_{2} F_{1}^{\prime}+F_{1}\left(F_{2}+\left(r-r_{H}\right) F_{2}^{\prime}\right)\right)\right] \\
& K_{0}=\frac{2}{\left(r-r_{H} H F_{1} F_{1}\right.},
\end{aligned}
$$

Derrick's argument: Black holes

- The Gibbons-Hawking-York term:

$$
\begin{aligned}
& d s^{2}=-F_{0}^{2} d t^{2}+H F_{1}^{2} d r^{2}+\left(r-r_{H}\right)^{2} F_{1}^{2} d \theta^{2}+F_{2}^{2}\left(d \varphi-F_{W} d t\right)^{2} \\
& \sqrt{-\gamma}=\frac{1}{\sqrt{H} F_{1}}, \\
& K=\frac{1}{\left(r-r_{H}\right) F_{0} F_{1}^{2} F_{2} \sqrt{H}}\left[\left(r-r_{H}\right) F_{1} F_{2} F_{0}^{\prime}+F_{0}\left(\left(r-r_{H}\right) F_{2} F_{1}^{\prime}+F_{1}\left(F_{2}+\left(r-r_{H}\right) F_{2}^{\prime}\right)\right)\right], \\
& K_{0}=\frac{2}{\left(r-r_{H}\right) F_{1}}, \\
& \leftrightarrow \\
& I_{G H Y}=\left.\int_{0}^{\pi} d \theta 0\right|_{r_{H}} ^{\infty}=0
\end{aligned}
$$

Derrick's argument: Black holes

- The Gibbons-Hawking-York term:

$$
\begin{aligned}
& d s^{2}=-F_{0}^{2} d t^{2}+H F_{1}^{2} d r^{2}+\left(r-r_{H}\right)^{2} F_{1}^{2} d \theta^{2}+F_{2}^{2}\left(d \varphi-F_{W} d t\right)^{2} \\
& \sqrt{-\gamma}=\frac{1}{\sqrt{H} F_{1}}, \\
& K=\frac{1}{\left(r-r_{H}\right) F_{0} F_{1}^{2} F_{2} \sqrt{H}}\left[\left(r-r_{H}\right) F_{1} F_{2} F_{0}^{\prime}+F_{0}\left(\left(r-r_{H}\right) F_{2} F_{1}^{\prime}+F_{1}\left(F_{2}+\left(r-r_{H}\right) F_{2}^{\prime}\right)\right)\right], \\
& K_{0}=\frac{2}{\left(r-r_{H}\right) F_{1}},
\end{aligned}
$$

$$
I_{G H Y}=\left.\int_{0}^{\pi} d \theta 0\right|_{r_{H}} ^{\infty}=0
$$

Derrick's argument: Black holes

- The Einstein-Hilbert part:

$$
d s^{2}=-F_{0}^{2} d t^{2}+H F_{1}^{2} d r^{2}+\left(r-r_{H}\right)^{2} F_{1}^{2} d \theta^{2}+F_{2}^{2}\left(d \varphi-F_{W} d t\right)^{2}
$$

Derrick's argument: Black holes

- The Einstein-Hilbert part:

$$
d s^{2}=-F_{0}^{2} d t^{2}+H F_{1}^{2} d r^{2}+\left(r-r_{H}\right)^{2} F_{1}^{2} d \theta^{2}+F_{2}^{2}\left(d \varphi-F_{W} d t\right)^{2}
$$

$$
\begin{aligned}
& \sqrt{-g} R
\end{aligned}
$$

$$
\begin{aligned}
& +2 F_{0}^{[}\left[2 F_{2} H\left(H \hat{F}_{1}^{2}+(r-r H) F_{1}^{2}\right)-2 H^{2} F_{1}\left(\hat{F}_{1} F_{2}+F_{1} \hat{F}_{2}\right)+\left(r-r_{H}\right)\left(\left(\left(r-r_{H}\right) H^{\prime}-2 H\right] F_{1} \theta_{t}\left(F_{1} F_{2}\right)-2 F_{1} H(r-r \mu)\left(F_{2} \hat{F}_{2}+F_{1} F_{2}^{\prime \prime}\right)\right.\right. \\
& \left.\left.\left.+F_{2} F_{1}^{2} H^{\prime}\right)\right]\right\}
\end{aligned}
$$

Derrick's argument: Black holes

- The Einstein-Hilbert part:

$$
d s^{2}=-F_{0}^{2} d t^{2}+H F_{1}^{2} d r^{2}+\left(r-r_{H}\right)^{2} F_{1}^{2} d \theta^{2}+F_{2}^{2}\left(d \varphi-F_{W} d t\right)^{2}
$$

$$
\begin{aligned}
& \sqrt{-g} R
\end{aligned}
$$

$$
\begin{aligned}
& +2 F_{0}^{[}\left[2 F_{2} H\left(H \hat{F}_{1}^{2}+(r-r H) F_{1}^{2}\right)-2 H^{2} F_{1}\left(\hat{F}_{1} F_{2}+F_{1} \hat{F}_{2}\right)+\left(r-r_{H}\right)\left(\left(\left(r-r_{H}\right) H^{\prime}-2 H\right] F_{1} \theta_{t}\left(F_{1} F_{2}\right)-2 F_{1} H(r-r \mu)\left(F_{2} \hat{F}_{2}+F_{1} F_{2}^{\prime \prime}\right)\right.\right. \\
& \left.\left.\left.+F_{2} F_{1}^{2} H^{\prime}\right)\right]\right\}
\end{aligned}
$$

For each radial derivative F_{i}^{\prime} there is an $\left(r-r_{H}\right)$

Derrick's argument: Black holes

- The Einstein-Hilbert part:

$$
d s^{2}=-F_{0}^{2} d t^{2}+H F_{1}^{2} d r^{2}+\left(r-r_{H}\right)^{2} F_{1}^{2} d \theta^{2}+F_{2}^{2}\left(d \varphi-F_{W} d t\right)^{2}
$$

$$
\begin{aligned}
& \sqrt{-g} R
\end{aligned}
$$

$$
\begin{aligned}
& +2 F_{0}^{2}\left[2 F_{2} H\left(H \hat{F}_{1}^{2}+\left(r-r_{H}\right) F_{1}^{2}\right)-2 H^{2} F_{1}\left(\hat{F}_{1} F_{2}+F_{1} \hat{F}_{2}\right)+\left(r-r_{H}\right)\left(\left[\left(r-r_{H}\right) H^{\prime}-2 H\right] F_{1} \theta_{r}\left(F_{1} F_{2}\right)-2 F_{1} H\left(r-r_{H}\right)\left(F_{2} \hat{F}_{2}+F_{1} F_{2}^{\prime \prime}\right)\right.\right. \\
& \left.\left.\left.+F_{2} F_{1}^{2} H^{\prime}\right)\right]\right\}
\end{aligned}
$$

For each radial derivative F_{i}^{\prime} there is an $\left(r-r_{H}\right)$

$$
\sqrt{-g_{\lambda}} R_{\lambda}=\frac{1}{\lambda} \sqrt{-g} R
$$

Derrick's argument: Black holes

- The Einstein-Hilbert part:

$$
d s^{2}=-F_{0}^{2} d t^{2}+H F_{1}^{2} d r^{2}+\left(r-r_{H}\right)^{2} F_{1}^{2} d \theta^{2}+F_{2}^{2}\left(d \varphi-F_{W} d t\right)^{2}
$$

$$
\begin{aligned}
& \sqrt{-g} R
\end{aligned}
$$

$$
\begin{aligned}
& +2 F_{0}^{2} 2 F_{2} H\left(H \hat{F}_{1}^{2}+\left(r-r r_{H}\right) F_{1}^{2}\right)-2 H^{2} F_{1}\left(\hat{F}_{1} F_{2}+F_{1} \hat{\hat{F}}_{2}\right)+\left(r-r_{H}\right)\left(\left(\left(r-r_{H}\right) H^{\prime}-2 H\right] F_{1} \theta_{1}\left(F_{1} F_{2}\right)-2 F_{1} H\left(r-r_{H}\right)\left(F_{2} \hat{F}_{2}+F_{1} F_{2}^{\prime \prime}\right)\right. \\
& \left.\left.\left.+F_{2} F_{1}^{2} H^{\prime}\right)\right]\right\}
\end{aligned}
$$

For each radial derivative F_{i}^{\prime} there is an $\left(r-r_{H}\right)$

$$
\sqrt{-g_{\lambda}} R_{\lambda}=\frac{1}{\lambda} \sqrt{-g} R
$$

Derrick's argument: Black holes

- The Einstein-Hilbert part:

$$
d s^{2}=-F_{0}^{2} d t^{2}+H F_{1}^{2} d r^{2}+\left(r-r_{H}\right)^{2} F_{1}^{2} d \theta^{2}+F_{2}^{2}\left(d \varphi-F_{W} d t\right)^{2}
$$

$$
\begin{aligned}
& \sqrt{-g} R \\
& =\frac{1}{2 F_{0} F_{1}^{2} H^{3 / 2}\left(r-r_{H}\right)}\left\{F_{1}^{2} F_{2}^{2} H\left(H \hat{F}_{W}^{2}+\left(r-r_{H}\right)^{2} F_{W}^{\prime 2}\right)+2 F_{0} F_{1}^{2}\left[-2 H^{2} \partial_{\theta}\left(\hat{F}_{0} F_{2}\right)+\left(r-r_{H}\right)\left(-2 \partial_{r}\left[F_{0}^{\prime} F_{2} H\left(r-r_{H}\right)\right]+3 F_{0}^{\prime} F_{2} H^{\prime}\left(r-r_{H}\right)\right)\right]\right. \\
& +2 F_{0}^{2}\left[2 F_{2} H\left(H \hat{F}_{1}^{2}+\left(r-r_{H}\right) F_{1}^{\prime 2}\right)-2 H^{2} F_{1}\left(\hat{\vec{F}}_{1} F_{2}+F_{1} \hat{\hat{F}}_{2}\right)+\left(r-r_{H}\right)\left(\left[\left(r-r_{H}\right) H^{\prime}-2 H\right] F_{1} \partial_{r}\left(F_{1} F_{2}\right)-2 F_{1} H\left(r-r_{H}\right)\left(F_{2} \hat{F}_{2}+F_{1} F_{2}^{\prime \prime}\right)\right.\right. \\
& \left.\left.\left.+F_{2} F_{1}^{2} H^{\prime}\right)\right]\right\}
\end{aligned}
$$

For each radial derivative F_{i}^{\prime} there is an $\left(r-r_{H}\right)$

$$
\sqrt{-g_{\lambda}} R_{\lambda}=\frac{1}{\lambda} \sqrt{-g} R \quad \stackrel{\lambda d r}{\square} \quad I_{R}=0
$$

Black Holes: Hairy Kerr

- Numerical metric ansatz:
$\mathcal{S}^{\Phi}=\mathcal{S}_{g r a v}+\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right]$

Black Holes: Hairy Kerr

- Numerical metric ansatz:

$$
\mathcal{S}^{\Phi}=\mathcal{S}_{g r a v}+\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right]
$$

Black Holes: Hairy Kerr

- Numerical metric ansatz:
$\mathcal{S}^{\Phi}=\mathcal{S}_{g \nmid a v}+\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right]$

Black Holes: Hairy Kerr

- Numerical metric ansatz:

Black Holes: Hairy Kerr

- Numerical metric ansatz:
$\mathcal{S}^{\Phi}=\mathcal{S}_{g \nmid \mu v}+\underbrace{\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu}\left(\Phi_{, \mu} \Phi_{, \nu}^{*}+\Phi_{, \mu}^{*} \Phi_{, \nu}\right)-U(|\Phi|)\right]}$

$$
\begin{aligned}
& \int d^{3} x\left(r-r_{H}\right) F_{1}^{2}\left[\frac{\sqrt{H}}{F_{0} F_{2}}\left(m^{2} F_{0}^{2}-F_{2}^{2}\left(\omega-m F_{W}^{2}\right)\right) \phi^{2}\right. \\
& \left.+F_{0} F_{2} U(\phi)\right]=0
\end{aligned}
$$

Toppings

Master Identities: Hairy Kerr

- Matter part:

$$
\mathcal{V}_{\text {scolar }}=\int d^{3} x \sqrt{-g}\left\{\left(1-\frac{3 r_{H}}{2 r}\right) T_{\varphi}^{t} W-\left[\left(1-\frac{r_{H}}{2 r}\right) T_{r}^{r}+N\left(T_{\theta}^{\theta}+T_{\varphi}^{\varphi}\right)+\frac{r_{H}}{2 r} T_{t}^{t}\right]\right\}
$$

Master Identities: Hairy Kerr

- Matter part:

$$
\mathcal{V}_{\text {scolar }}=\int d^{3} x \sqrt{-g}\left\{\left(1-\frac{3 r_{H}}{2 r}\right) T_{\varphi}^{t} W-\left[\left(1-\frac{r_{H}}{2 r}\right) T_{r}^{r}+N\left(T_{\theta}^{\theta}+T_{\varphi}^{\varphi}\right)+\frac{r_{H}}{2 r} T_{t}^{t}\right]\right\}
$$

$$
E_{\mu}^{\nu} \equiv G_{\mu}^{\nu}-8 \pi T_{\mu}^{\nu}=0
$$

Master Identities: Hairy Kerr

- Matter part:

$$
\mathcal{V}_{\text {scalar }}=\int d^{3} x \sqrt{-g}\left\{\left(1-\frac{3 r_{H}}{2 r}\right) T_{\varphi}^{t} W-\left[\left(1-\frac{r_{H}}{2 r}\right) T_{r}^{r}+N\left(T_{\theta}^{\theta}+T_{\varphi}^{\varphi}\right)+\frac{r_{H}}{2 r} T_{t}^{t}\right]\right\}
$$

$$
E_{\mu}^{\nu} \equiv G_{\mu}^{\nu}-8 \pi T_{\mu}^{\nu}=0
$$

$$
\int d^{3} x \sqrt{-g}\left\{\left(1-\frac{3 r_{H}}{2 r}\right) E_{\varphi}^{t} W-\left[\left(1-\frac{r_{H}}{2 r}\right) E_{r}^{r}+N\left(E_{\theta}^{\theta}+E_{\varphi}^{\varphi}\right)+\frac{r_{H}}{2 r} E_{t}^{t}\right]\right\}=0
$$

Master Identities: Convenient gauge

- Matter part:

$$
\int d^{3} x \sqrt{-g}\left[2\left(T_{t}^{t}-T_{r}^{r}-T_{\theta}^{\theta}\right)+\left(T_{t}^{t}-T_{\varphi}^{\varphi}\right)\left(1-\frac{4 \omega F_{2}\left(\omega-m F_{W}\right)}{m^{2} F_{0}^{2}+F_{2}^{2}\left(\omega^{2}-m^{2} F_{W}^{2}\right)}\right)\right]=0
$$

The stress energy tensor is multiplication parameters is matter dependent

Master Identities: Convenient gauge

- Matter part:

$$
\int d^{3} x \sqrt{-g}\left[2\left(T_{t}^{t}-T_{r}^{r}-T_{\theta}^{\theta}\right)+\left(T_{t}^{t}-T_{\varphi}^{\varphi}\right)\left(1-\frac{4 \omega F_{2}\left(\omega-m F_{W}\right)}{m^{2} F_{0}^{2}+F_{2}^{2}\left(\omega^{2}-m^{2} F_{W}^{2}\right)}\right)\right]=0
$$

The stress energy tensor is multiplication parameters is matter dependent

Master Identities: Convenient gauge

- Matter part:

$$
\int d^{3} x \sqrt{-g}\left[2\left(T_{t}^{t}-T_{r}^{r}-T_{\theta}^{\theta}\right)+\left(T_{t}^{t}-T_{\varphi}^{\varphi}\right)\left(1-\frac{4 \omega F_{2}\left(\omega-m F_{W}\right)}{m^{2} F_{0}^{2}+F_{2}^{2}\left(\omega^{2}-m^{2} F_{W}^{2}\right)}\right)\right]=0
$$

The stress energy tensor is multiplication parameters is matter dependent

Can be seen as a generalization of Desert's theorem as a sum of pressures

Conclusion

Summary

- We presented a generic recipe to compute virial identities in field theory
- The GHY term is required due to the presence of second-order derivatives of the metric
- One noticed that, for a generic metric, relations are too complex
- There is a special "gauge" choice that trivializes the gravitational contribution
- The identities can be recast as combinations of the equations of motion
- This has allowed us to obtain some master form identities

Summary

- We presented a generic recipe to compute virial identities in field theory
- The GHY term is required due to the presence of second-order derivatives of the metric
- One noticed that, for a generic metric, relations are too complex
- There is a special "gauge" choice that trivializes the gravitational contribution
- The identities can be recast as combinations of the equations of motion
- This has allowed us to obtain some master form identities

Summary

- We presented a generic recipe to compute virial identities in field theory
- The GHY term is required due to the presence of second-order derivatives of the metric
- One noticed that, for a generic metric, relations are too complex
- There is a special "gauge" choice that trivializes the gravitational contribution
- The identities can be recast as combinations of the equations of motion
- This has allowed us to obtain some master form identities

Summary

- We presented a generic recipe to compute virial identities in field theory
- The GHY term is required due to the presence of second-order derivatives of the metric
- One noticed that, for a generic metric, relations are too complex
- There is a special "gauge" choice that trivializes the gravitational contribution
- The identities can be recast as combinations of the equations of motion
- This has allowed us to obtain some master form identities

Summary

- We presented a generic recipe to compute virial identities in field theory
- The GHY term is required due to the presence of second-order derivatives of the metric
- One noticed that, for a generic metric, relations are too complex
- There is a special "gauge" choice that trivializes the gravitational contribution
- The identities can be recast as combinations of the equations of motion
- This has allowed us to obtain some master form identities

Summary

- We presented a generic recipe to compute virial identities in field theory
- The GHY term is required due to the presence of second-order derivatives of the metric
- One noticed that, for a generic metric, relations are too complex
- There is a special "gauge" choice that trivializes the gravitational contribution
- The identities can be recast as combinations of the equations of motion
- This has allowed us to obtain some master form identities

Conclusion
Virial identities are a helpful tool that can be used to have a better insight into the models

Virial
Insight

Thanks
Obrigado! ceico

Virial identities

in relativistic gravity

$$
\begin{aligned}
& 2109.05027 \\
& 2206.02813 \\
& 2207.12451
\end{aligned}
$$

pombo@fzu.cz

Thank you! Obrigado!

Virial identities

in relativistic gravity

$$
\begin{aligned}
& 2109.05027 \\
& 2206.02813 \\
& 2207.12451
\end{aligned}
$$

pombo@fzu.cz

