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Introduction



● The virial theorem relates the average kinetic and potential energy

● It allows the average kinetic energy to be calculated even for very 
complicated systems

● The theorem has found applications in several areas
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Ingredients:

● Action S

● Metric ansatz g𝜇𝜈
● Matter ansatz 

● Gibbons-Hawking-York term (gravity)
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● Derrick’s scaling argument

● Hamilton’s principle

● Love and patience
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II● The gravitational action

 

Derrick’s argument: Gravity  

The boundary term is needed since the gravitational Lagrangian 
density, R, contains second order derivatives of the metric tensor

10



II

Derrick’s argument: Black hole  
● In the presence of an horizon

 

13

r = +∞K K
0

R

r = 0

r
H



II

Derrick’s argument: Black hole  
● In the presence of an horizon

 

13

r = +∞K K
0

R

r = 0

r
H



II

Derrick’s argument: Kerr  
● Let us pick the gravitational action again:

 

21



II

Derrick’s argument: Kerr  
● Let us pick the gravitational action again:

 

21



II

Derrick’s argument: Kerr  
● Let us pick the gravitational action again:

 

21



II

Derrick’s argument: Kerr  
● Let us pick the gravitational action again:

 

21



II

Derrick’s argument: Kerr  
● Let us pick the gravitational action again:

 

21



II

Derrick’s argument: Kerr  
● Let us pick the gravitational action again:

 

21



II

Derrick’s argument: Kerr  
● Let us pick the gravitational action again:

 

21



II

Derrick’s argument: Kerr  
● Let us pick the gravitational action again:

 

21



II

Derrick’s argument: Kerr  
● Let us pick the gravitational action again:

 

21



II● The Gibbons-Hawking-York comes as

 

Black Holes: Kerr  

22



II

Black Holes: Kerr  
● The Gibbons-Hawking-York comes as

 

22



II● The Gibbons-Hawking-York comes as

 

Black Holes: Kerr  

22



II

Black Holes: Kerr  
● The Gibbons-Hawking-York comes as

 

22



II● The Gibbons-Hawking-York comes as

 

Black Holes: Kerr  

22



II● The Gibbons-Hawking-York comes as

 

Black Holes: Kerr  

22



II● The Einstein-Hilbert:

 

Black Holes: Kerr  

23



II● The Einstein-Hilbert:

 

Black Holes: Kerr  

23



II● The Einstein-Hilbert:

 

Black Holes: Kerr  

Complicated

23



II● The Einstein-Hilbert:

 

Black Holes: Kerr  

Complicated

23



II● The Einstein-Hilbert:

 

Black Holes: Kerr  

Complicated

23



II● The Einstein-Hilbert:

 

Black Holes: Kerr  

Complicated

23



II● The Einstein-Hilbert:

 

Black Holes: Kerr  

Complicated

23



II● The Einstein-Hilbert:

 

Black Holes: Kerr  

Complicated

23



II

Black Holes: Hairy Kerr  
● Numerical metric ansatz:

 

24



II

Black Holes: Hairy Kerr  
● Numerical metric ansatz:

 

24



II

Black Holes: Hairy Kerr  
● Numerical metric ansatz:

 

24



II

Black Holes: Hairy Kerr  
● Numerical metric ansatz:

 

24



II

Black Holes: Hairy Kerr  
● Numerical metric ansatz:

 

25



II

Black Holes: Hairy Kerr  
● Numerical metric ansatz:

 

25



II

Black Holes: Hairy Kerr  
● Numerical metric ansatz:

 

25



II

Black Holes: Hairy Kerr  
● Numerical metric ansatz:

 

25



Plating
Convenient metric

arXiv:2207.12451



II

Derrick’s argument: Black holes  
● Let us introduce the a new metric ansatz:

 

26



II

Derrick’s argument: Black holes  
● Let us introduce the a new metric ansatz:

 

26



II

Derrick’s argument: Black holes  
● Let us introduce the a new metric ansatz:

 

26



II

Derrick’s argument: Black holes  
● Let us introduce the a new metric ansatz:

 

26



II

Derrick’s argument: Black holes  
● Let us introduce the a new metric ansatz:

 

26



II

Derrick’s argument: Black holes  
● The Gibbons-Hawking-York term:

 

27



II

Derrick’s argument: Black holes  
● The Gibbons-Hawking-York term:

 

27



II

Derrick’s argument: Black holes  
● The Gibbons-Hawking-York term:

 

27



II

Derrick’s argument: Black holes  
● The Einstein-Hilbert part:

 

28



II

Derrick’s argument: Black holes  
● The Einstein-Hilbert part:

 

28



II

Derrick’s argument: Black holes  
● The Einstein-Hilbert part:

 For each radial derivative F
i
’ there is an (r-r

H
)

28



II

Derrick’s argument: Black holes  
● The Einstein-Hilbert part:

 For each radial derivative F
i
’ there is an (r-r

H
)

28



II

Derrick’s argument: Black holes  
● The Einstein-Hilbert part:

 For each radial derivative F
i
’ there is an (r-r

H
)

28

λ dr 



II

Derrick’s argument: Black holes  
● The Einstein-Hilbert part:

 For each radial derivative F
i
’ there is an (r-r

H
)

28

λ dr 



II

Black Holes: Hairy Kerr  
● Numerical metric ansatz:

 

29



II

Black Holes: Hairy Kerr  
● Numerical metric ansatz:

 

29



II

Black Holes: Hairy Kerr  
● Numerical metric ansatz:

 

29



II

Black Holes: Hairy Kerr  
● Numerical metric ansatz:

 

29



II

Black Holes: Hairy Kerr  
● Numerical metric ansatz:

 

29



Toppings



II

Master Identities: Hairy Kerr  
● Matter part:

 

30



II● Matter part:

 

Master Identities: Hairy Kerr  

30



II● Matter part:

 

Master Identities: Hairy Kerr  

30



II● Matter part:

 

The stress energy tensor is multiplication parameters is matter 
dependent

Master Identities: Convenient gauge 

31



II● Matter part:

 

The stress energy tensor is multiplication parameters is matter 
dependent

Master Identities: Convenient gauge 

31



II● Matter part:

 

The stress energy tensor is multiplication parameters is matter 
dependent

Can be seen as a generalization of Desert’s theorem as a sum of 
pressures

Master Identities: Convenient gauge 
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Summary   
● We presented a generic recipe to compute virial identities in field 

theory 

● The GHY term is required due to the presence of second-order 
derivatives of the metric

● One noticed that, for a generic metric, relations are too complex

● There is a special "gauge" choice that trivializes the gravitational 
contribution

● The identities can be recast as combinations of the equations of motion

● This has allowed us to obtain some master form identities
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Conclusion   
Virial identities are a helpful tool that can be used to have a better insight 
into the models

Virial Insight

Model
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