The effects of running gravitational coupling on three dimensional black holes

Ángel Rincón in collaboration with B. Koch, N. Cruz, C. Laporte and F. Canales.

University of Alicante

Lisbon, December 19, 2022

Outline

- Introduction
- Classical solution
- Scale-dependent Idea
- Black hole solution
- Some properties
- Take home messages

Starting point: the Einstein equations

$$\underbrace{R_{\mu\nu} - \frac{1}{2} Rg_{\mu\nu}}_{\text{Geometry}} = \underbrace{-\Lambda g_{\mu\nu} + 8\pi G T_{\mu\nu}}_{\text{Matter}},$$

describe the Universe from (certain) small scales up to large scales (galaxy clusters and beyond).

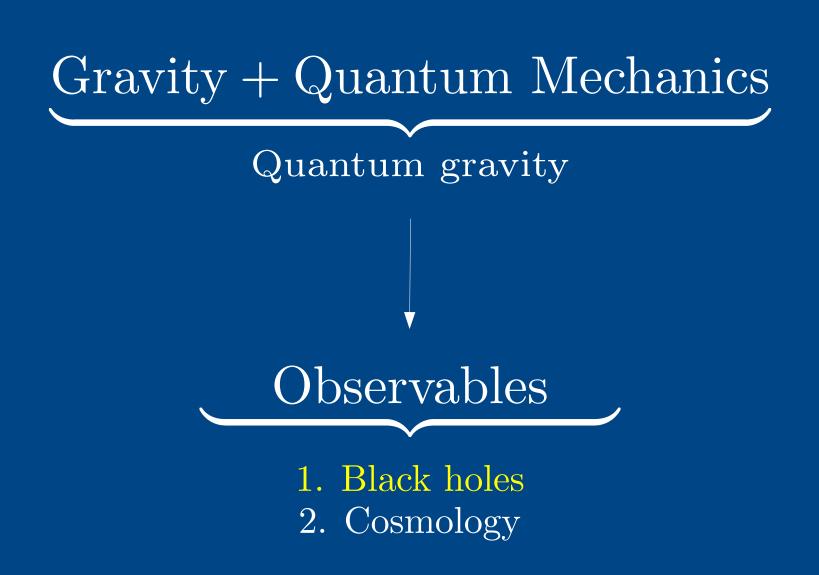
Einstein's theory is still incomplete.

- Singularities inside black holes
- Cosmological constant problem
- EG does not describe small scale physics.

EG is usually considered as an **effective theory**. In order to obtain a complete description of our Universe, new physics is required.

The simplest modification of the Einstein-Hilbert action is





Approaches Approaches Perturbative Non perturbative String Theory ...

Particularly, in a QG theory, the action is now scale dependent

 $S \to \Gamma_k$

Quantum gravity allows us to get insights in the Black Hole theory...

At low energies, the resulting effective action of gravity shows us a scale dependence.

The couplings, which appearing in the effective action, evolve and depend on the scale, i.e., $G_0 \to G_k$ and $e_0 \to e_k$.

Classical Action ($J_0 = 0$)

The gravitational action in three dimensions is

$$I_0[g_{\mu\nu}] = \int d^3x \sqrt{-g} \left[\frac{1}{2\kappa_0} \left(R - 2\Lambda_0 \right) \right],$$

which leads to

$$G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = -\Lambda_0 g_{\mu\nu},$$

being Λ_0 and $\kappa_0 \equiv 8\pi G_0$ are the cosmological constant and the Einstein's constant respectively.

The line element for a non rotating black hole in (2+1) looks like:

$$ds^{2} = -f_{0}(r) dt^{2} + f_{0}(r)^{-1} dr^{2} + r^{2} d\phi^{2},$$

Classical BTZ Solution ($J_0 = 0$)

With the solution given by

$$f_0(r) = -G_0 M_0 + \frac{r^2}{\ell_0^2}.$$

The entropy and temperature are:

$$S_0 = \frac{\mathcal{A}_H}{4G_0}$$
, $T_0 = \frac{1}{4\pi} \left| \frac{2M_0 G_0}{r_0^+} \right|$,

where $\Lambda_0 \equiv -1/\ell_0^2$ and M_0 is the mass of Black Hole. Please, note that the horizon is given by the condition $f_0(r_H) = 0$

$$r_0^+ = \pm \sqrt{G_0 M_0} \ \ell_0,$$

Classical Rotating BTZ Solution

Considering a shift function

$$ds^{2} = -f_{0}(r) dt^{2} + f_{0}(r)^{-1} dr^{2} + r^{2} \left(N_{0}(r) dt + d\phi \right)^{2},$$

Where we have

$$f_0(r) = -G_0 M_0 + \frac{r^2}{\ell_0^2} + \frac{G_0^2 J_0^2}{4r^2},$$
$$N_0(r) = -\frac{G_0 J_0}{2r^2}.$$

And J_0 is the angular momentum.

Action with Running Couplings

The gravitational action in three dimensions is

$$\Gamma[g_{\mu\nu}, \mathbf{k}] = \int d^3x \sqrt{-g} \left[\frac{1}{2\kappa_{\mathbf{k}}} \left(R - 2\Lambda_{\mathbf{k}} \right) \right].$$

Thus, varying with respect to the metric field

$$G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = -\Lambda_{\mathbf{k}}g_{\mu\nu} + \kappa_{\mathbf{k}}T_{\mu\nu},$$

where the effective energy-momentum tensor is given by

$$\kappa_{\mathbf{k}}T_{\mu\nu} = \kappa_{\mathbf{k}}T^m_{\mu\nu} - \Delta t_{\mu\nu}$$

being the new term:

$$\Delta t_{\mu\nu} = G_{\mathbf{k}} \Big(g_{\mu\nu} \Box - \nabla_{\mu} \nabla_{\nu} \Big) G_{\mathbf{k}}^{-1}$$

Beta function of G(r)

The beta function for the Newton's coupling in three dimensions is

$$\beta_g = \left(1 + \eta_N\right), \qquad \qquad \eta_N = \frac{B_1 g}{1 - g B_2}$$

In the limit of $|B_1| >> |B_2|$ we obtain

$$G(r) = \frac{G_0}{1 + G_0 B_1 k(r)}, \qquad \qquad k(r) = \frac{\xi^2}{G_0 B_1 r^2}$$

And finally, the Newton's function is then

$$G(r) = G_0 \left[1 + \left(\frac{\xi}{r}\right)^2 \right]^{-1}$$

Rotating Scale-dependent Solution

The line element is

$$ds^{2} = -f(r) dt^{2} + h(r) dr^{2} + r^{2} \left(N(r) dt + d\phi \right)^{2},$$

And we should solve the set $\{f(r), h(r), N(r), G(r), \Lambda(r)\}$

i) From gravitational beta function, we get G(r)

ii) From effective Einstein Equations, we obtain the remaining functions $\{f(r), h(r), N(r), \Lambda(r)\}$

Rotating Scale-dependent Solution

The unknown functions are

$$f(\mathbf{r}) = -M(r) + \frac{r^2}{\ell_0^2} + \frac{J(r)^2}{4r^2}$$
$$M(r) = M_0 \delta(r, \xi), \qquad J(r)^2 = J_0^2 \delta(r, \xi)^2.$$
$$h(\mathbf{r}) = \left[1 - \left(\frac{\xi}{r}\right)^2\right]^6 f(r)^{-1}$$
$$N(\mathbf{r}) = N_0(r)\delta(r, \xi),$$
$$\delta(r, \epsilon) = -7 + \frac{2\xi^2}{r^2} - \frac{\xi^4}{3r^4} + \frac{8r^2}{\xi^2} \ln\left(1 + \frac{\xi^2}{r^2}\right).$$

Rotating Scale-dependent Solution

$$\begin{split} \mathbf{\Lambda}(\mathbf{r}) &= \frac{1}{9\ell_0^2\xi^4 \left(r^2 - \xi^2\right)^6 \left(\xi^2 + r^2\right)^2} \left[24\ell_0^2 r^8 \ln\left(1 + \frac{\xi^2}{r^2}\right) \left(2J_0^2 \left(\xi^8 + 6\xi^2 r^6 - 15\xi^4 r^4 - 8\xi^6 r^2\right) - 6J_0^2 r^4 \left(r^2 - 3\xi^2\right) \left(\xi^2 + r^2\right) \ln\left(1 + \frac{\xi^2}{r^2}\right) \right. \\ &\left. + 3M_0\xi^2 r^4 \left(r^2 - 3\xi^2\right) \left(\xi^2 + r^2\right) \right) + \xi^4 \left(-9r^{12} \left(r^2 - 3\xi^2\right) \left(\xi^2 + r^2\right) \right. \\ &\left. - \left(-3\xi^6 + 12r^6 - 39\xi^2 r^4 + 14\xi^4 r^2 \right) \times J_0^2 \ell_0^2 \left(-\xi^6 + 12r^6 + 3\xi^2 r^4 \right) \right] \right] \end{split}$$

$$+2\xi^4 r^2) - 12\ell_0^2 M_0 r^8 (\xi^6 + 6r^6 - 15\xi^2 r^4 - 8\xi^4 r^2) \bigg) \bigg].$$

16

Black Hole Thermodynamics

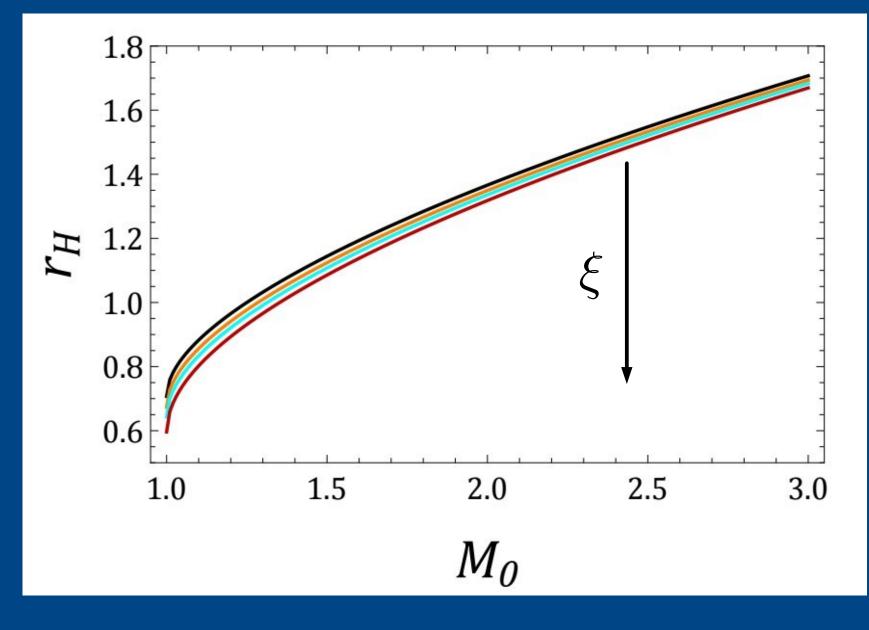
We found the black hole temperature and the entropy by using the standard relations:

$$T_H(r_H) = \frac{1}{4\pi} \left| \frac{2M_0 G(r_H)}{r_H} \Delta \right|.$$
$$S_H(r_H) = \frac{\mathcal{A}_H(r_H)}{4G(r_H)} = S_0(r_H) \left[1 + \left(\frac{\xi}{r_H}\right)^2 \right]$$

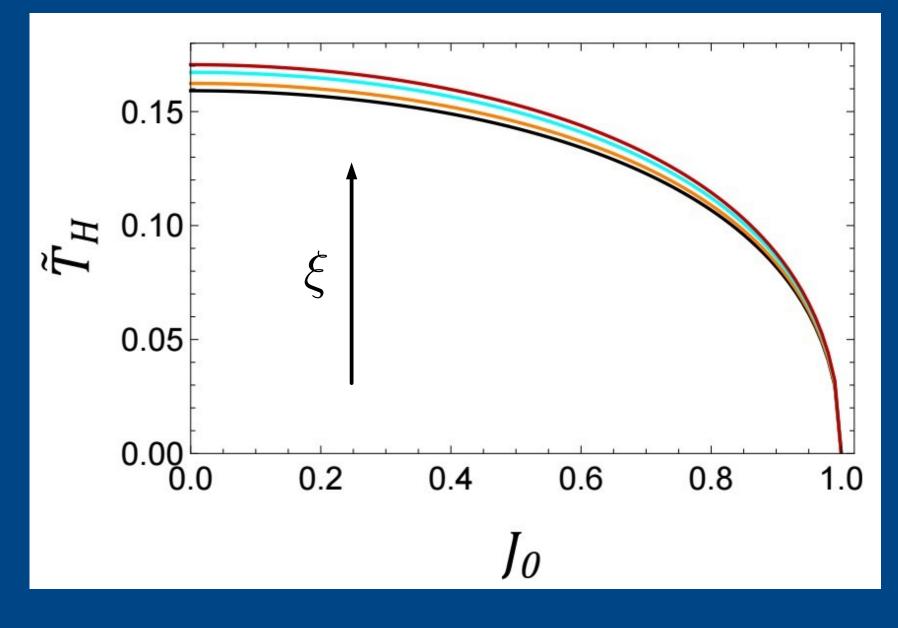
where

$$\Delta = \sqrt{1 - \left(\frac{J_0}{M_0 \ell_0}\right)^2}.$$

Numerical Results A



Numerical Results B



Take home messages

1- Scale-dependence in 2+1 dimensions slightly modifies the classical black hole solution.

2- From the beta function for the gravitational coupling, we obtain the explicit form of Newton's coupling

3- Classical and scale-dependent black hole solutions have the same critical angular momentum.

4- Rotating scale-dependent solution converges to the classical one when $\xi \to 0$