Acceleration and radiation of cosmic rays near by astrophysically black hole

Bakhtinur Juraev
In collaboration with: Arman Tursunov, Zdeněk Stuchlík, Martin Kološ

Motivation

No hair theorem: M(mass) , a(spin) and Q(charge).

- Mass:
- can be measured from the orbits near by objects.
- many other methods mass measurement.
- Spin is loosely constrained:
- has no Newtonian effect
- regime of strong gravity is needed
- spin can be determined based on the modelling of e.g. the light curves of a hot spot or a jet base - Charge Q:
- Maximum value of the charge of the black hole $\sqrt{\frac{Q_{G}^{2} G}{c^{4}}}=\frac{2 G M}{c^{2}} \Rightarrow Q_{G} \approx 10^{30} \frac{M}{M_{\odot}} \mathrm{Fr}$.
- Realistic value of the black hole's charge $10^{11} \frac{M}{M_{\odot}} \operatorname{Fr} \leq Q_{\mathrm{BH}} \leq 10^{18} \frac{M}{M_{\odot}} \operatorname{Fr}$. Zajaček M. et al.(2018)

CRs and UHECRs observations

UHECRs:

- Unreachable energy by Earth based experiments
- Charged particles
- Spectrum has knees and ankle
- Extremely rare at ultra-high energies
- Extra-Galactic origin
- Detected mostly on Earth - Composition at high energy
* Mechanism is unknown - most energetic accelerator in the universe!

Production of a cosmic-ray extensive air shower.

Exotic scenarios

Extra dimensions scenarios

Lorentz invariance violation

Existence of new particles

Along magnetic field lines

Topological defects, strings, SUSY...

Acceleration scenarios

Powerful source with enough available energy

Build accelerator of $\sim 400 \mathrm{mln} \mathrm{km}$ size with
LHC technology:

Motion around weakly charged black hole

Schwarzschild metric:

$$
\mathrm{d} s^{2}=-\left(1-\frac{2 M}{r}\right) \mathrm{d} t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} \mathrm{~d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)
$$

Four potential:

$$
A_{\mu}=\left(-\frac{Q}{r}, 0,0,0\right)
$$

Specific energy and angular momentum:

$$
\mathscr{E}=\frac{E}{m}, \quad \mathscr{L}=\frac{L}{m}
$$

Super Hamiltonian and equations of motion:

$$
\begin{gathered}
H=\frac{1}{2} g^{\alpha \beta}\left(\pi_{\alpha}-q A_{\alpha}\right)\left(\pi_{\beta}-q A_{\beta}\right)+\frac{1}{2} m^{2}=0, \quad \pi_{\mu}=p_{\mu}+q A_{\mu} \\
\frac{\mathrm{d} X^{\alpha}}{\mathrm{d} \zeta}=\frac{\partial H}{\partial P_{\mu}}, \quad \frac{\mathrm{d} P_{\mu}}{\mathrm{d} \zeta}=-\frac{\partial H}{\partial X^{\mu}}
\end{gathered}
$$

Motion around weakly charged black hole

Effective potential:

$$
V_{e f f}(r)=\frac{\mathbb{Q}}{r}+\sqrt{\left(1-\frac{2 M}{r}\right)\left(1+\frac{\mathscr{L}^{2}}{r^{2} \sin ^{2} \theta}\right)}
$$

Electric parameter:

$$
Q=\frac{Q q}{m}
$$

$$
\partial_{r}^{2} V_{e f f}(r, \mathscr{L}, Q)=\mathscr{L}^{2} r^{2}(J(r-2)+2)+r^{4}(J(r-2)-r+3)+\mathscr{L}^{4}((r-3) r+3)=0, \quad v=\sqrt{\frac{1}{1+r_{i s c o}^{2} / \mathscr{L}_{i s c o}^{2}}}
$$

Conservation laws:

$$
\begin{gathered}
E_{1}=E_{2}+E_{3}, \quad L_{1}=L_{2}+L_{3}, \\
m_{1} \dot{r}_{1}=m_{2} \dot{r}_{2}+m_{3} \dot{r}_{3}, \\
0=m_{2} \dot{\theta}_{2}+m_{3} \dot{\theta}_{3}, \\
m_{1} \geq m_{2}+m_{3}, \\
m_{1} u_{1}^{\phi}=m_{2} u_{2}^{\phi}+m_{3} u_{3}^{\phi}
\end{gathered}
$$

Efficiency of Penrose process:
$\eta=\frac{E_{3}-E_{1}}{E_{1}}=\frac{-E_{2}}{E_{1}}, \quad \eta_{\max }=21 \%$

Particle 1 splits into 2 fragments 2 and 3 close to the horizon:

$$
\begin{gathered}
E_{1}=E_{2}+E_{3}, \quad L_{1}=L_{2}+L_{3}, \quad q_{1}=q_{2}+q_{3} \\
m_{1} \dot{r}_{1}=m_{2} \dot{r}_{2}+m_{3} \dot{r}_{3}, \quad m_{1} \geqslant m_{2}+m_{3}
\end{gathered}
$$

$$
m_{1} u_{1}^{\phi}=m_{2} u_{2}^{\phi}+m_{3} u_{3}^{\phi}
$$

Noticing that $u^{\phi}=\Omega u^{t}=\Omega e / f(r), \quad$ where $\quad e_{i}=\left(E_{i}+q_{i} A_{t}\right) / m_{i}$

$$
E_{3}=\left(\frac{1}{\sqrt{2 r_{i o n}}}+\frac{1}{2}\right) E_{1}+\frac{q_{3} Q}{r_{i o n}}
$$

Acceleration of particles by weakly charged black hole

$$
\eta=\frac{E_{3}}{E_{1}}=\frac{1}{2}+\sqrt{\frac{G M}{2 r_{i o n} c^{2}}}+\frac{Z e Q}{A m_{n} c^{2} r_{i o n}}
$$

$$
\begin{aligned}
& \text { Blue } r_{i o n}=2 G M / c^{2} \\
& \text { Red dashed: } r_{i o n}=3 G M / c^{2} \\
& \text { Black dot-dashed: } r_{i o n}=4 G M / c^{2}
\end{aligned}
$$

Acceleration of particles by weakly charged black hole

Tursunov A., Juraev B., Stuchlík Z. and Kološ M. (2021)

Penrose Process:	Blandford-Znajek mechanism	Electric Penrose Process
Type of black hole:	Rotating black hole	Non-rotating black hole
Extracted:	Rotational energy	Electrostatic energy
Field:	Magnetic field	Electric field
Escape:	Along magnetic field lines	Isotropic escape
Trajectory:	Curled	Straight

Particle radiation near a weakly charged black hole

$u^{\mu}=d x^{\mu} / d \tau-$ Particle four velocity
$\Gamma_{\alpha \beta}^{\mu}=\frac{1}{2} g^{\mu \gamma}\left(g_{\gamma \alpha, \beta}+g_{\gamma \beta, \alpha}-g_{\alpha \beta, \gamma}\right)-$ Christoffel symbols
$F_{\rho \nu}=\partial_{\rho} A_{\nu}-\partial_{\nu} A_{\rho}-$ Tensor of electromagnetic field
$\mathscr{F}_{\rho \nu}=\partial_{\rho} \mathscr{A}_{\nu}-\partial_{\nu} \mathscr{A}_{\rho}-$ Self-force of charged particle

$$
x_{2}
$$

$\rightarrow 2$ ${ }^{2}$

\square

$$
P 4+2
$$

.
R

Electric field

$$
\frac{d u^{\mu}}{d \tau}=\frac{q}{m} g^{\mu \rho} F_{\rho \nu} u^{\nu}+\frac{q}{m} g^{\mu \rho} \mathscr{F}_{\rho \nu} u^{\nu}-\Gamma_{\alpha \beta}^{\mu} u^{\alpha} u^{\beta}
$$

\qquad

$$
3
$$

[

$$
A_{\mu}=\left(-\frac{Q}{r}, 0,0,0\right)
$$

Four potential:

\qquad

Particle radiation near a weakly charged black hole

DeWitt \& Brehme equation (1960):

$$
\frac{D u^{\mu}}{d \tau}=\frac{q}{m} F^{\mu}{ }_{\nu} u^{\nu}+\frac{2 q^{2}}{m^{2}}\left(\frac{D^{2} u^{\mu}}{d \tau^{2}}+u^{\mu} u_{\nu} \frac{D^{2} u^{\nu}}{d \tau^{2}}\right)+\frac{q^{2}}{3 m}\left(R_{\lambda}^{\mu} u^{\nu}+R_{\lambda}^{\nu} u_{\nu} u^{\lambda} u^{\mu}\right)+\frac{q^{2}}{m} u_{\nu} \int_{-\infty}^{\tau} D^{[\mu} G_{+\lambda^{\nu}}^{\nu]}\left(\tau, \tau^{\prime}\right) u^{\lambda^{\prime}}\left(\tau^{\prime}\right) d \tau^{\prime}
$$

- Ricci terms are irrelevant in vacuum metrics
- Tail term can estimated, e.g. around Schwarzschild black hole:

$$
\frac{F_{\text {tail }}}{F_{N}} \sim \frac{q^{2}}{m M G} \sim 10^{-19}\left(\frac{q}{e}\right)\left(\frac{m_{e}}{m}\right)\left(\frac{10 M_{\odot}}{M}\right)_{\text {e.g. Dewitt \& Dewitt (1964), Smith \& Will (1980), Gal'tsov (1982), } \ldots . .}
$$

For elementary particles in astrophysical scenarios the equation of motion can be simplified to the covariant form of LD equation:

$$
\frac{D u^{\mu}}{d \tau}=\frac{q}{m} F_{\nu}^{\mu} u^{\nu}+\frac{2 q^{2}}{m^{2}}\left(\frac{D^{2} u^{\mu}}{d \tau^{2}}+u^{\mu} u_{\nu} \frac{D^{2} u^{\nu}}{d \tau^{2}}\right)
$$

$$
\frac{D u^{\mu}}{d \tau}=\frac{q}{m} F^{\mu}{ }_{\nu} u^{\nu}+\frac{2 q^{2}}{m^{2}}\left(\frac{D^{2} u^{\mu}}{d \tau^{2}}+u^{\mu} u_{\nu} \frac{D^{2} u^{\nu}}{d \tau^{2}}\right)
$$

Solutions

1. Direct integration - runaway solutions!:

Requires properly chosen initial conditions
Time dispersion error - backward integration helps
2. Reduction of order of equation - covariant Landau - Lifshitz equation:

$$
\frac{D u^{\mu}}{d \tau}=\frac{q}{m} F^{\mu}{ }_{\nu} u^{\nu}+k \tilde{q}\left(\frac{D F^{\alpha}{ }_{\beta}}{d x^{\mu}} u^{\beta} u^{\mu}+\tilde{q}\left(F^{\alpha}{ }_{\beta} F^{\beta}{ }_{\beta}+F_{\mu \nu} F^{\nu}{ }_{\sigma} u^{\sigma} u^{\alpha}\right) u^{\mu}\right)
$$

Equations of motion

Equations of motion:

$$
\begin{gathered}
\frac{d u^{t}}{d \tau}=\frac{Q u^{r}}{r^{2} f}+\frac{k Q}{r^{4} f}\left[f r^{3}\left(u^{\phi}\right)^{2}+\left(u^{r}\right)^{2}\left\{Q u^{t}-2 r\right\}+f u^{t}\left\{Q-f\left(u^{t}\right)^{2}\right\}\right]-\frac{2}{r^{2} f} u^{r} u^{t} \\
\frac{d u^{r}}{d \tau}=\frac{Q f u^{t}}{r^{2}}+\frac{k Q u^{r}}{r^{4} f}\left[Q f+Q\left(u^{r}\right)^{2}-f^{2} u^{t}\left\{2 r+Q u^{t}\right\}\right]+\frac{\left(u^{r}\right)^{2}}{r^{2} f}+f\left[r\left(u^{\phi}\right)^{2}-\frac{\left(u^{t}\right)^{2}}{r^{2}}\right] \\
\frac{d u^{\phi}}{d \tau}=\frac{k Q u^{\phi}}{r^{4} f}\left[Q\left(u^{r}\right)^{2}+f^{2} u^{t}\left\{r-Q u^{t}\right\}\right]
\end{gathered}
$$

Electric parameter:

$$
Q=\frac{Q q}{m}
$$

Radiation parameter:

$$
k=\frac{2 q^{2}}{3 m}
$$

Orbital widening

Without radiation:

$$
\begin{gathered}
Q=\frac{Q q}{m}=0.5 \\
k=\frac{2 q^{2}}{3 m}=0
\end{gathered}
$$

With radiation:

$$
\begin{aligned}
& Q=\frac{Q q}{m}=0.5 \\
& k=\frac{2 q^{2}}{3 m}=0.01
\end{aligned}
$$

Conclusion

- The energy of ionized particle can be much greater than the initial energy of the neutral particle if both charges of the ionized particle and black hole have the same sign.
- No rotation of BH is needed! Energy comes in expense of the electrostatic energy of the BH
- Energy of a charged particle is $E_{i o n} \sim Q / M_{B H}$ i.e. E is restricted by the charge-to-mass ratio of BH
- Combined gravitational and electric field is spherically symmetric, therefore one would expect isotropic statistics of escaping charged particles with no preferred direction of the motion.
- Particle escapes shifting of circular orbit outwards from the black hole due to radiation reaction.

Thank you for your attention!

