Black Hole Greybody Factors from Korteweg-de Vries Integrals

Michele Lenzi

Institut de Ciències de l'Espai (ICE-CSIC, IEEC), Barcelona

December 20, 2022, XV BH Meeting, Lisbon

M. L. and C. F. Sopuerta, Phys. Rev. D 104, 084053 (2021), Phys. Rev.

$$
\text { D 104, } 124068 \text { (2021), arXiv:2212.03732 [gr-qc] }
$$

1 Full landscape of master equations for non-rotating BHs

2 Darboux covariance in perturbed Schwarzschild BH

3 Korteweg-de Vries isospectral deformations

4 Greybody factors from KdV integrals: moment problem methods

5 Conclusions and outlook

Full landscape of master equations for non-rotating BHs

Decoupling Einstein equations

- Perturbed Einstein equations at linear order

$$
g_{\mu \nu}=\widehat{g}_{\mu \nu}+h_{\mu \nu} \quad \longrightarrow \quad \widehat{G}_{\mu \nu}=0, \quad \delta G_{\mu \nu}=0
$$

- Metric splitting reflecting spherical symmetry

$$
\widehat{g}_{\mu \nu}=\left(\begin{array}{cc}
g_{a b} & 0 \\
0 & r^{2} \Omega_{A B}
\end{array}\right) \quad \longrightarrow \quad \begin{aligned}
& g_{a b} \mathrm{~d} x^{a} \mathrm{~d} x^{b}=-f(r) \mathrm{d} t^{2}+\mathrm{d} r^{2} / f(r) \\
& \Omega_{A B} \mathrm{~d} \Theta^{A} \mathrm{~d} \Theta^{B}=\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}
\end{aligned}
$$

- Harmonics expansion $\quad h_{\mu \nu}=\sum_{\ell, m} h_{\mu \nu}^{\ell m, o d d}+h_{\mu \nu}^{\ell m, \text { even }}$

Decoupling Einstein equations

- Perturbed Einstein equations at linear order

$$
g_{\mu \nu}=\widehat{g}_{\mu \nu}+h_{\mu \nu} \quad \longrightarrow \quad \widehat{G}_{\mu \nu}=0, \quad \delta G_{\mu \nu}=0
$$

- Metric splitting reflecting spherical symmetry

$$
\widehat{g}_{\mu \nu}=\left(\begin{array}{cc}
g_{a b} & 0 \\
0 & r^{2} \Omega_{A B}
\end{array}\right) \quad \longrightarrow \quad \begin{aligned}
& g_{a b} \mathrm{~d} x^{a} \mathrm{~d} x^{b}=-f(r) \mathrm{d} t^{2}+\mathrm{d} r^{2} / f(r) \\
& \Omega_{A B} \mathrm{~d} \Theta^{A} \mathrm{~d} \Theta^{B}=\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}
\end{aligned}
$$

- Harmonics expansion $\quad h_{\mu \nu}=\sum_{\ell, m} h_{\mu \nu}^{\ell m, \text { odd }}+h_{\mu \nu}^{\ell m, \text { even }}$
- The master equations

$$
\delta G_{\mu \nu}=0 \quad \longrightarrow \quad\left(-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial x^{2}}-V_{\text {even } / \text { odd }}^{\ell}\right) \Psi_{\text {even } / \text { odd }}^{\ell m}=0
$$

Odd parity

$$
\begin{aligned}
\Psi_{\mathrm{RW}} & =\frac{r^{a}}{r} \tilde{h}_{a} \\
\Psi_{\mathrm{CPM}} & =\frac{2 r}{(\ell-1)(\ell+2)} \varepsilon^{a b}\left(\tilde{h}_{b: a}-\frac{2}{r} r_{a} \tilde{h}_{b}\right) \\
V_{\mathrm{RW}} & =f(r)\left(\frac{\ell(\ell+1)}{r^{2}}-\frac{3 r_{s}}{r^{3}}\right)
\end{aligned}
$$

T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063-1069 (1957), C. T. Cunningham et al., Astrophys. J. 224, 643-667 (1978)

Known master equations

Odd parity

$$
\begin{aligned}
\Psi_{\mathrm{RW}} & =\frac{r^{a}}{r} \tilde{h}_{a} \\
\Psi_{\mathrm{CPM}} & =\frac{2 r}{(\ell-1)(\ell+2)} \varepsilon^{a b}\left(\tilde{h}_{b: a}-\frac{2}{r} r_{a} \tilde{h}_{b}\right) \\
V_{\mathrm{RW}} & =f(r)\left(\frac{\ell(\ell+1)}{r^{2}}-\frac{3 r_{s}}{r^{3}}\right)
\end{aligned}
$$

Even parity

$$
\begin{aligned}
\Psi_{\mathrm{ZM}} & =\frac{2 r}{\ell(\ell+1)}\left\{\tilde{K}+\frac{2}{\lambda}\left(r^{a} r^{b} \tilde{h}_{a b}-r r^{a} \tilde{K}_{: a}\right)\right\} \\
V_{\mathrm{Z}} & =\frac{f(r)}{\lambda^{2}}\left[\frac{(\ell-1)^{2}(\ell+2)^{2}}{r^{2}}\left(\ell(\ell+1)+\frac{3 r_{s}}{r}\right)+\frac{9 r_{s}^{2}}{r^{4}}\left((\ell-1)(\ell+2)+\frac{r_{s}}{r}\right)\right]
\end{aligned}
$$

F. J. Zerilli, Phys. Rev. D 2, 2141-2160 (1970), V. Moncrief, Ann. Phys. (N.Y.)

88, 323 (1974)

Assumptions

What are all the possible master equations that one can obtain for the vacuum perturbations of a Schwarzschild BH?
M. L. and C. F. Sopuerta, Phys. Rev. D 104, 084053 (2021)

Assumptions

What are all the possible master equations that one can obtain for the vacuum perturbations of a Schwarzschild BH?

1 Linear in the metric perturbations and first-order derivatives

$$
\begin{aligned}
\Psi_{\mathrm{odd}}^{\ell m} & =C_{0}^{\ell} h_{0}^{\ell m}+C_{1}^{\ell} h_{1}^{\ell m}+C_{2}^{\ell} h_{2}^{\ell m} \\
& +C_{3}^{\ell} \dot{h}_{0}^{\ell m}+C_{4}^{\ell} h_{0}^{\prime \ell m}+C_{5}^{\ell} \dot{h}_{1}^{\ell m} \\
& +C_{6}^{\ell} h_{1}^{\prime \ell m}+C_{7}^{\ell} \dot{h}_{2}^{\ell m}+C_{8}^{\ell} h_{2}^{\prime \ell m}
\end{aligned}
$$

2 Time independent coefficients

$$
C_{i}^{\ell}=C_{i}^{\ell}(r)
$$

3 Arbitrary perturbative gauge
M. L. and C. F. Sopuerta, Phys. Rev. D 104, 084053 (2021)

The standard branch

- Standard branch potentials

$$
{ }_{\mathrm{S}} V_{\ell}^{\text {odd/even }}= \begin{cases}V_{\ell}^{\mathrm{RW}} & \text { odd parity } \\ V_{\ell}^{\mathrm{Z}} & \text { even parity }\end{cases}
$$

- Standard branch potentials

$$
\mathrm{s} V_{\ell}^{\text {odd/even }}= \begin{cases}V_{\ell}^{\mathrm{RW}} & \text { odd parity } \\ V_{\ell}^{\mathrm{Z}} & \text { even parity }\end{cases}
$$

- Most general master function

$$
\begin{gathered}
{ }_{\mathrm{S}} \Psi^{\text {odd } / \text { even }}= \begin{cases}\mathcal{C}_{1} \Psi^{\mathrm{CPM}}+\mathcal{C}_{2} \Psi^{\mathrm{RW}} & \text { odd parity } \\
\mathcal{C}_{1} \Psi^{\mathrm{ZM}}+\mathcal{C}_{2} \Psi^{\mathrm{NE}} & \text { even parity }\end{cases} \\
\Psi^{\mathrm{NE}}(t, r)=\frac{1}{\lambda(r)} t^{a}\left(r \tilde{K}_{: a}-\tilde{h}_{a b} r^{b}\right) \longrightarrow \text { New master function! }
\end{gathered}
$$

- Standard branch potentials

$$
{ }_{\mathrm{S}} V_{\ell}^{\text {odd/even }}= \begin{cases}V_{\ell}^{\mathrm{RW}} & \text { odd parity } \\ V_{\ell}^{\mathrm{Z}} & \text { even parity }\end{cases}
$$

- Most general master function

$$
\begin{gathered}
\mathrm{S} \Psi^{\text {odd } / \text { even }}= \begin{cases}\mathcal{C}_{1} \Psi^{\mathrm{CPM}}+\mathcal{C}_{2} \Psi^{\mathrm{RW}} & \text { odd parity } \\
\mathcal{C}_{1} \Psi^{\mathrm{ZM}}+\mathcal{C}_{2} \Psi^{\mathrm{NE}} & \text { even parity }\end{cases} \\
\Psi^{\mathrm{NE}}(t, r)=\frac{1}{\lambda(r)} t^{a}\left(r \tilde{K}_{: a}-\tilde{h}_{a b} r^{b}\right) \longrightarrow \text { New master function! }
\end{gathered}
$$

- Time derivative relation

$$
t^{a} \Psi_{, a}^{\mathrm{CPM}}=2 \Psi^{\mathrm{RW}}, \quad t^{a} \Psi_{, a}^{\mathrm{ZM}}=2 \Psi^{\mathrm{NE}}
$$

The Darboux branch

- Family of potentials ${ }_{\mathrm{D}} V_{\ell}^{\text {odd/even }}$ satisfying

$$
\left(\frac{\delta V_{, x}}{\delta V}\right)_{, x}+2\left(\frac{V_{\ell, x}^{\mathrm{RW} / \mathrm{Z}}}{\delta V}\right)_{, x}-\delta V=0
$$

with $\delta V={ }_{\mathrm{D}} V_{\ell}^{\text {odd/even }}-V_{\ell}^{\mathrm{RW} / \mathrm{Z}}$.

- Family of potentials ${ }_{\mathrm{D}} V_{\ell}^{\text {odd/even }}$ satisfying

$$
\left(\frac{\delta V_{, x}}{\delta V}\right)_{, x}+2\left(\frac{V_{\ell, x}^{\mathrm{RW} / \mathrm{Z}}}{\delta V}\right)_{, x}-\delta V=0
$$

with $\delta V={ }_{\mathrm{D}} V_{\ell}^{\text {odd/even }}-V_{\ell}^{\mathrm{RW} / \mathrm{Z}}$.

- Most general (potential dependent) master function
${ }_{\mathrm{D}} \Psi^{\text {odd/even }}= \begin{cases}\mathcal{C}_{1} \Psi^{\text {CPM }}+\mathcal{C}_{2}\left(\Sigma^{\text {odd }} \Psi^{\text {CPM }}+\Phi^{\text {odd }}\right) & \text { odd parity } \\ \mathcal{C}_{1} \Psi^{\mathrm{ZM}}+\mathfrak{C}_{2}\left(\Sigma^{\text {even }} \Psi^{\mathrm{ZM}}+\Phi^{\text {even }}\right) & \text { even parity }\end{cases}$

Darboux covariance in perturbed Schwarzschild BH

- Darboux transformation between (v, Φ) and (V, Ψ)

$$
\left(-\partial_{t}^{2}+\partial_{x}^{2}-v\right) \Phi=0 \longrightarrow\left\{\begin{array}{l}
\Psi=\Phi_{, x}+g \Phi \\
V=v+2 g_{, x} \\
g_{, x}-g^{2}+v=\mathcal{C}
\end{array} \longrightarrow\left(-\partial_{t}^{2}+\partial_{x}^{2}-V\right) \Psi=0\right.
$$

- Darboux transformation between (v, Φ) and (V, Ψ)

$$
\left(-\partial_{t}^{2}+\partial_{x}^{2}-v\right) \Phi=0 \longrightarrow\left\{\begin{array}{l}
\Psi=\Phi_{, x}+g \Phi \\
V=v+2 g_{, x} \\
g_{, x}-g^{2}+v=\mathcal{C}
\end{array} \longrightarrow\left(-\partial_{t}^{2}+\partial_{x}^{2}-V\right) \Psi=0\right.
$$

$$
\left(\frac{\delta V_{, x}}{\delta V}\right)_{, x}+2\left(\frac{v_{, x}}{\delta V}\right)_{, x}-\delta V=0
$$

- Darboux transformation between (v, Φ) and (V, Ψ)

$$
\begin{gathered}
\left(-\partial_{t}^{2}+\partial_{x}^{2}-v\right) \Phi=0 \longrightarrow\left\{\begin{array}{l}
\Psi=\Phi_{, x}+g \Phi \\
V=v+2 g_{, x} \\
g_{, x}-g^{2}+v=\mathcal{C}
\end{array} \longrightarrow\left(-\partial_{t}^{2}+\partial_{x}^{2}-V\right) \Psi=0\right. \\
\left(\frac{\delta V_{, x}}{\delta V}\right)_{, x}+2\left(\frac{v_{, x}}{\delta V}\right)_{, x}-\delta V=0
\end{gathered}
$$

- Darboux covariance of perturbations of spherically-symmetric BHs

Darboux transformation

- Darboux transformation between (v, Φ) and (V, Ψ)

$$
\begin{gathered}
\left(-\partial_{t}^{2}+\partial_{x}^{2}-v\right) \Phi=0 \longrightarrow\left\{\begin{array}{l}
\Psi=\Phi_{, x}+g \Phi \\
V=v+2 g_{, x} \\
g_{, x}-g^{2}+v=\complement
\end{array} \longrightarrow\left(-\partial_{t}^{2}+\partial_{x}^{2}-V\right) \Psi=0\right. \\
\left(\frac{\delta V_{, x}}{\delta V}\right)_{, x}+2\left(\frac{v_{, x}}{\delta V}\right)_{,_{x}}-\delta V=0
\end{gathered}
$$

- Darboux covariance of perturbations of spherically-symmetric BHs

Korteweg-de Vries isospectral deformations

Korteweg-de Vries isospectral deformations

$$
V_{, \tau}-6 V V_{, x}+V_{, x x x}=0
$$

■ DT + inverse scattering to solve the KdV equation
C. S. Gardner et al., Phys. Rev. Lett. 19, 1095-1097 (1967)

$$
V_{, \tau}-6 V V_{, x}+V_{, x x x}=0
$$

- DT + inverse scattering to solve the KdV equation
- KdV deformations of the frequency domain master equation

$$
\left\{\begin{array}{l}
V(x) \rightarrow V(\tau, x) \\
\psi(x) \rightarrow \psi(\tau, x) \\
k \rightarrow k(\tau)
\end{array}\right.
$$

M. L. and C. F. Sopuerta, Phys. Rev. D 104, 124068 (2021)

$$
V_{, \tau}-6 V V_{, x}+V_{, x x x}=0
$$

- DT + inverse scattering to solve the KdV equation

■ KdV deformations of the frequency domain master equation

$$
\left\{\begin{array}{l}
V(x) \rightarrow V(\tau, x) \\
\psi(x) \rightarrow \psi(\tau, x) \\
k \rightarrow k(\tau)
\end{array} \quad \Longrightarrow \quad\left(k^{2}\right)_{, \tau}=0\right.
$$

M. L. and C. F. Sopuerta, Phys. Rev. D 104, 124068 (2021)

$$
V_{, \tau}-6 V V_{, x}+V_{, x x x}=0
$$

- DT + inverse scattering to solve the KdV equation
- KdV deformations of the frequency domain master equation

$$
\left\{\begin{array}{l}
V(x) \rightarrow V(\tau, x) \\
\psi(x) \rightarrow \psi(\tau, x) \\
k \rightarrow k(\tau)
\end{array} \Longrightarrow \quad\left(k^{2}\right)_{, \tau}=0\right.
$$

- KdV equation as an integrable Hamiltonian system with infinite conserved quantities

$$
I_{n}[V]=\int_{-\infty}^{\infty} d x P_{n}\left(V, V_{, x}, V_{, x x}, \ldots\right)
$$

L. D. Faddeev and V. E. Zakharov, Funct. Anal. Appl. 5, 280-287 (1971)

$$
V_{, \tau}-6 V V_{, x}+V_{, x x x}=0
$$

- DT + inverse scattering to solve the KdV equation

■ KdV deformations of the frequency domain master equation

$$
\left\{\begin{array}{l}
V(x) \rightarrow V(\tau, x) \\
\psi(x) \rightarrow \psi(\tau, x) \\
k \rightarrow k(\tau)
\end{array} \Longrightarrow \quad\left(k^{2}\right)_{, \tau}=0\right.
$$

- KdV equation as an integrable Hamiltonian system with infinite conserved quantities

$$
I_{n}[V]=\int_{-\infty}^{\infty} d x P_{n}\left(V, V_{, x}, V_{, x x}, \ldots\right) \quad \longrightarrow \quad I_{n}[V]=I_{n}\left[V_{\mathrm{RW}}\right]
$$

M. L. and C. F. Sopuerta, Phys. Rev. D 104, 124068 (2021)

Greybody factors from KdV integrals: moment problem methods

BH scattering

$$
\psi(x,, k, \tau)=\left\{\begin{array}{l}
a(k, \tau) e^{i k x}+b(k, \tau) e^{-i k x} \\
e^{i k x}
\end{array}\right.
$$

$$
\psi(x,, k, \tau)=\left\{\begin{array}{l}
a(k, \tau) e^{i k x}+b(k, \tau) e^{-i k x} \\
e^{i k x}
\end{array}\right.
$$

- Bogoliubov coefficients completely determine the greybody factors (and QNMs)

$$
T(k, \tau)=|a(k, \tau)|^{-2}, \quad R(k, \tau)=\left|\frac{b(k, \tau)}{a(k, \tau)}\right|^{2}
$$

BH scattering

$$
\psi(x,, k, \tau)=\left\{\begin{array}{l}
a(k, \tau) e^{i k x}+b(k, \tau) e^{-i k x} \\
e^{i k x}
\end{array}\right.
$$

- Bogoliubov coefficients completely determine the greybody factors (and QNMs)

$$
T(k, \tau)=|a(k, \tau)|^{-2}, \quad R(k, \tau)=\left|\frac{b(k, \tau)}{a(k, \tau)}\right|^{2}
$$

- Bogoliubov coefficients (and greybody factors) are conserved by DT and KdV deformations

BH greybody factors from KdV integrals

- Trace identities: a set of integral equations that relate the KdV integrals to the greybody factors

$$
(-1)^{n+1} \frac{I_{2 n+1}}{2^{2 n+1}}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d k k^{2 n} \ln T(k)
$$

BH greybody factors from KdV integrals

- Trace identities: a set of integral equations that relate the KdV integrals to the greybody factors

$$
(-1)^{n+1} \frac{I_{2 n+1}}{2^{2 n+1}}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d k k^{2 n} \ln T(k)
$$

A moment problem

The greybody factors in BH scattering processes are uniquely determined by the KdV integrals of the BH potential via a (Hamburger) moment problem

$$
\mu_{2 n}=\int_{-\infty}^{\infty} d k k^{2 n} p(k)
$$

where

$$
\mu_{2 n}=(-1)^{n} \frac{I_{2 n+1}}{2^{2 n+1}}, \quad p(k)=-\frac{\ln T(k)}{2 \pi}
$$

M. L. and C. F. Sopuerta, arXiv:2212.03732 [gr-qc]

$$
\mu_{n}=\int_{\mathcal{J}} d x x^{n} p(x) \quad n=0,1,2, \ldots
$$

- Existence: Is there a function $p(x)$ on \mathcal{J} whose moments are given by $\left\{\mu_{n}\right\}$?
- Uniqueness: Do the moments $\left\{\mu_{n}\right\}$ determine uniquely a distribution $p(x)$ on J?
- Construction: How can we construct all such probability distributions?

Moment problem

Existence

$$
D_{n}=\left|\begin{array}{cccc}
\mu_{0} & \mu_{1} & \cdots & \mu_{n} \\
\mu_{1} & \mu_{2} & \cdots & \mu_{n+1} \\
\mu_{2} & \mu_{3} & \cdots & \mu_{n+2} \\
\vdots & \vdots & \cdots & \vdots \\
\mu_{n} & \mu_{n+1} & \cdots & \mu_{2 n}
\end{array}\right|>0
$$

Uniqueness

$$
\Delta(n)=C^{n}(2 n)!-\hat{\mu}_{2 n}>0
$$

Conclusions and outlook

- Construction of the solution in a forthcoming paper
- Complete picture of master equations for perturbations of non-rotating BH s and their connection to two different isospectral symmetries
- Explotation of the isospectral symmetries and KdV conserved quantities to determine that the BH greybody factors are completely determined by the KdV integrals (a covariant formulation) as a moment problem

■ General framework: extensions to Kerr BH, modified theories of gravity, higher dimensions...

- Construction of the solution in a forthcoming paper
- Complete picture of master equations for perturbations of non-rotating BHs and their connection to two different isospectral symmetries
- Explotation of the isospectral symmetries and KdV conserved quantities to determine that the BH greybody factors are completely determined by the KdV integrals (a covariant formulation) as a moment problem
- General framework: extensions to Kerr BH, modified theories of gravity, higher dimensions...

> Thank you!

