	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
000000	00	00	0000000

Black Hole Greybody Factors from Korteweg-de Vries Integrals

Michele Lenzi

Institut de Ciències de l'Espai (ICE-CSIC, IEEC), Barcelona

December 20, 2022, XV BH Meeting, Lisbon

M. L. and C. F. Sopuerta, Phys. Rev. D 104, 084053 (2021), Phys. Rev. D 104, 124068 (2021), arXiv:2212.03732 [gr-qc]

Landscape of master equations	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
000000	00	00	000000
Outline			

- **1** Full landscape of master equations for non-rotating BHs
- 2 Darboux covariance in perturbed Schwarzschild BH
- **3** Korteweg-de Vries isospectral deformations
- 4 Greybody factors from KdV integrals: moment problem methods
- 5 Conclusions and outlook

Landscape of master equations	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
00000	00	00	000000

Full landscape of master equations for non-rotating BHs

Perturbed Einstein equations at linear order

$$g_{\mu\nu} = \hat{g}_{\mu\nu} + h_{\mu\nu} \quad \longrightarrow \quad \hat{G}_{\mu\nu} = 0 \,, \quad \delta G_{\mu\nu} = 0$$

Metric splitting reflecting spherical symmetry

$$\widehat{g}_{\mu\nu} = \begin{pmatrix} g_{ab} & 0 \\ 0 & r^2 \Omega_{AB} \end{pmatrix} \longrightarrow \begin{pmatrix} g_{ab} dx^a dx^b = -f(r) dt^2 + dr^2/f(r) \\ \Omega_{AB} d\Theta^A d\Theta^B = d\theta^2 + \sin^2 \theta d\varphi^2 \end{pmatrix}$$

• Harmonics expansion $h_{\mu\nu} = \sum_{\ell,m} h_{\mu\nu}^{\ell m, \text{odd}} + h_{\mu\nu}^{\ell m, \text{even}}$

Perturbed Einstein equations at linear order

$$g_{\mu\nu} = \hat{g}_{\mu\nu} + h_{\mu\nu} \quad \longrightarrow \quad \hat{G}_{\mu\nu} = 0 \,, \quad \delta G_{\mu\nu} = 0 \,$$

Metric splitting reflecting spherical symmetry

$$\widehat{g}_{\mu\nu} = \begin{pmatrix} g_{ab} & 0 \\ 0 & r^2 \Omega_{AB} \end{pmatrix} \longrightarrow \begin{array}{c} g_{ab} \mathrm{d}x^a \mathrm{d}x^b = -f(r) \,\mathrm{d}t^2 + \mathrm{d}r^2/f(r) \\ \Omega_{AB} \mathrm{d}\Theta^A \mathrm{d}\Theta^B = \mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\varphi^2 \end{array}$$

• Harmonics expansion $h_{\mu\nu} = \sum_{\ell,m} h_{\mu\nu}^{\ell m, \text{odd}} + h_{\mu\nu}^{\ell m, \text{even}}$

• The master equations

$$\delta G_{\mu\nu} = 0 \quad \longrightarrow \quad \left[\left(-\frac{\partial^2}{\partial t^2} + \frac{\partial^2}{\partial x^2} - V^{\ell}_{\text{even/odd}} \right) \Psi^{\ell m}_{\text{even/odd}} = 0 \right]$$

Landscape of master equations	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
00000	00	00	000000
Known master equati	ons		

Odd parity

$$\Psi_{\rm RW} = \frac{r^a}{r} \tilde{h}_a$$

$$\Psi_{\rm CPM} = \frac{2r}{(\ell-1)(\ell+2)} \varepsilon^{ab} \left(\tilde{h}_{b:a} - \frac{2}{r} r_a \tilde{h}_b \right)$$

$$V_{\rm RW} = f(r) \left(\frac{\ell(\ell+1)}{r^2} - \frac{3r_s}{r^3} \right)$$

T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063-1069 (1957), C. T. Cunningham et al., Astrophys. J. 224, 643-667 (1978)

Landscape of master equations	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
00000	00	00	000000
Known master equati	ons		

Odd parity

$$\begin{split} \Psi_{\rm RW} &= \frac{r^a}{r} \tilde{h}_a \\ \Psi_{\rm CPM} &= \frac{2r}{(\ell-1)(\ell+2)} \varepsilon^{ab} \left(\tilde{h}_{b:a} - \frac{2}{r} r_a \tilde{h}_b \right) \\ V_{\rm RW} &= f(r) \left(\frac{\ell(\ell+1)}{r^2} - \frac{3r_s}{r^3} \right) \end{split}$$

Even parity

$$\begin{split} \Psi_{\rm ZM} &= \frac{2r}{\ell(\ell+1)} \left\{ \tilde{K} + \frac{2}{\lambda} \left(r^a r^b \tilde{h}_{ab} - r r^a \tilde{K}_{:a} \right) \right\} \\ V_{\rm Z} &= \frac{f(r)}{\lambda^2} \bigg[\frac{(\ell-1)^2 (\ell+2)^2}{r^2} \bigg(\ell(\ell+1) + \frac{3r_s}{r} \bigg) + \frac{9r_s^2}{r^4} \Big((\ell-1)(\ell+2) + \frac{r_s}{r} \Big) \bigg] \end{split}$$

F. J. Zerilli, Phys. Rev. D 2, 2141-2160 (1970), V. Moncrief, Ann. Phys. (N.Y.) 88, 323 (1974)

Landscape of master equations	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
000000	00	00	000000
Assumptions			

What are all the possible master equations that one can obtain for the vacuum perturbations of a Schwarzschild BH?

M. L. and C. F. Sopuerta, Phys. Rev. D 104, 084053 (2021)

6 / 19

Landscape of master equations	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
000000	00	00	000000
Assumptions			

What are all the possible master equations that one can obtain for the vacuum perturbations of a Schwarzschild BH?

I Linear in the metric perturbations and first-order derivatives

$$\begin{split} \Psi_{\text{odd}}^{\ell m} &= C_0^\ell h_0^{\ell m} + C_1^\ell h_1^{\ell m} + C_2^\ell h_2^{\ell m} \\ &+ C_3^\ell \dot{h}_0^{\ell m} + C_4^\ell h_0^{\prime \ell m} + C_5^\ell \dot{h}_1^{\ell m} \\ &+ C_6^\ell h_1^{\prime \ell m} + C_7^\ell \dot{h}_2^{\ell m} + C_8^\ell h_2^{\prime \ell m} \end{split}$$

2 Time independent coefficients

$$C_i^\ell = C_i^\ell(r)$$

3 Arbitrary perturbative gauge

M. L. and C. F. Sopuerta, Phys. Rev. D 104, 084053 (2021)

Landscape of master equations	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
000000	00	00	000000
The standard branch			

Standard branch potentials

$${}_{\rm S}V_\ell^{\rm odd/even} = \begin{cases} V_\ell^{\rm RW} & \text{ odd parity} \\ \\ V_\ell^{\rm Z} & \text{ even parity} \end{cases}$$

Landscape of master equations	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
000000	00	00	000000
The standard branch			

Standard branch potentials

$${}_{\rm S}V_{\ell}^{\rm odd/even} = \begin{cases} V_{\ell}^{\rm RW} & \text{odd parity} \\ \\ V_{\ell}^{\rm Z} & \text{even parity} \end{cases}$$

Most general master function

$${}_{\rm S}\Psi^{\rm odd/even} = \begin{cases} \ {\mathcal C}_1\Psi^{\rm CPM} + {\mathcal C}_2\Psi^{\rm RW} & {\rm odd \ parity} \\ \\ \ {\mathcal C}_1\Psi^{\rm ZM} + {\mathcal C}_2\Psi^{\rm NE} & {\rm even \ parity} \end{cases}$$

$$\Psi^{\rm NE}(t,r) = \frac{1}{\lambda(r)} t^a \left(r \tilde{K}_{:a} - \tilde{h}_{ab} r^b \right) \quad \longrightarrow \quad \left(\text{New master function!} \right)$$

Landscape of master equations	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
000000	00	00	000000
The standard branch			

Standard branch potentials

$${}_{\rm S}V_{\ell}^{\rm odd/even} = \begin{cases} V_{\ell}^{\rm RW} & \text{odd parity} \\ \\ V_{\ell}^{\rm Z} & \text{even parity} \end{cases}$$

Most general master function

$${}_{\rm S}\Psi^{\rm odd/even} = \begin{cases} \ {}^{\rm C_1}\Psi^{\rm CPM} + {}^{\rm C_2}\Psi^{\rm RW} & {\rm odd \ parity} \\ \\ \ {}^{\rm C_1}\Psi^{\rm ZM} + {}^{\rm C_2}\Psi^{\rm NE} & {\rm even \ parity} \end{cases}$$

$$\Psi^{\rm NE}(t,r) = \frac{1}{\lambda(r)} t^a \left(r \tilde{K}_{:a} - \tilde{h}_{ab} r^b \right) \quad \longrightarrow \quad \left[\text{New master function!} \right]$$

• Time derivative relation

$$t^a \Psi^{\text{CPM}}_{,a} = 2 \Psi^{\text{RW}}, \quad t^a \Psi^{\text{ZM}}_{,a} = 2 \Psi^{\text{NE}}$$

Landscape of master equations	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
000000	00	00	000000
The Darboux branch			

• Family of potentials ${}_{\rm D}V_{\ell}^{\rm odd/even}$ satisfying

$$\left(\frac{\delta V_{,x}}{\delta V}\right)_{,x} + 2 \left(\frac{V^{\rm RW/Z}_{\ell,x}}{\delta V}\right)_{,x} - \delta V = 0 \,,$$

with
$$\delta V = {}_{\mathrm{D}}V_{\ell}^{\mathrm{odd/even}} - V_{\ell}^{\mathrm{RW/Z}}.$$

Landscape of master equations	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
000000	00	00	000000
The Darboux branch			

 \blacksquare Family of potentials ${}_{\rm D}V_\ell^{\rm odd/even}$ satisfying

$$\left(\frac{\delta V_{,x}}{\delta V}\right)_{,x} + 2 \left(\frac{V^{\rm RW/Z}_{\ell,x}}{\delta V}\right)_{,x} - \delta V = 0 \,,$$

with
$$\delta V = {}_{\mathrm{D}}V_{\ell}^{\mathrm{odd/even}} - V_{\ell}^{\mathrm{RW/Z}}.$$

Most general (potential dependent) master function

$${}_{\mathrm{D}}\Psi^{\mathrm{odd/even}} = \begin{cases} \mathcal{C}_{1}\Psi^{\mathrm{CPM}} + \mathcal{C}_{2}\left(\Sigma^{\mathrm{odd}}\Psi^{\mathrm{CPM}} + \Phi^{\mathrm{odd}}\right) & \text{odd parity} \\ \\ \mathcal{C}_{1}\Psi^{\mathrm{ZM}} + \mathcal{C}_{2}\left(\Sigma^{\mathrm{even}}\Psi^{\mathrm{ZM}} + \Phi^{\mathrm{even}}\right) & \text{even parity} \end{cases}$$

	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
000000	00	00	000000

Darboux covariance in perturbed Schwarzschild BH

Landscape of master equations	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
000000	00	00	000000

Darboux transformation

 \blacksquare Darboux transformation between (v,Φ) and (V,Ψ)

$$(-\partial_t^2 + \partial_x^2 - v) \Phi = 0 \longrightarrow \begin{cases} \Psi = \Phi_{,x} + g \Phi \\ V = v + 2 g_{,x} \longrightarrow (-\partial_t^2 + \partial_x^2 - V) \Psi = 0 \\ g_{,x} - g^2 + v = \mathfrak{C} \end{cases}$$

	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
000000	00	00	0000000

Darboux transformation

• Darboux transformation between (v, Φ) and (V, Ψ)

$$(-\partial_t^2 + \partial_x^2 - v) \Phi = 0 \longrightarrow \begin{cases} \Psi = \Phi_{,x} + g \Phi \\ V = v + 2 g_{,x} \longrightarrow (-\partial_t^2 + \partial_x^2 - V) \Psi = 0 \\ g_{,x} - g^2 + v = \mathfrak{C} \end{cases}$$

$$\left(\left(\frac{\delta V_{,x}}{\delta V}\right)_{,x} + 2\left(\frac{v_{,x}}{\delta V}\right)_{,x} - \delta V = 0\right)$$

Darboux covariance KdV deformations 00

Darboux transformation

Darboux transformation between (v, Φ) and (V, Ψ)

$$(-\partial_t^2 + \partial_x^2 - v) \Phi = 0 \longrightarrow \begin{cases} \Psi = \Phi_{,x} + g \Phi \\ V = v + 2 g_{,x} \longrightarrow (-\partial_t^2 + \partial_x^2 - V) \Psi = 0 \\ g_{,x} - g^2 + v = \mathcal{C} \end{cases}$$
$$\left(\frac{\delta V_{,x}}{\delta V} \right)_{,x} + 2 \left(\frac{v_{,x}}{\delta V} \right)_{,x} - \delta V = 0$$

Darboux covariance of perturbations of spherically-symmetric BHs

 Landscape of master equations
 Darboux covariance
 KdV deformations
 Greybody factors from KdV integrals

 000000
 0●
 00
 0000000

Darboux transformation

• Darboux transformation between (v, Φ) and (V, Ψ)

$$(-\partial_t^2 + \partial_x^2 - v) \Phi = 0 \longrightarrow \begin{cases} \Psi = \Phi_{,x} + g \Phi \\ V = v + 2 g_{,x} \longrightarrow (-\partial_t^2 + \partial_x^2 - V) \Psi = 0 \\ g_{,x} - g^2 + v = \mathcal{C} \end{cases}$$
$$\left(\frac{\delta V_{,x}}{\delta V} \right)_{,x} + 2 \left(\frac{v_{,x}}{\delta V} \right)_{,x} - \delta V = 0$$

Darboux covariance of perturbations of spherically-symmetric BHs

	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
000000	00	•0	0000000

Korteweg-de Vries isospectral deformations

			Greybody factors from KdV integrals
000000	00	00	0000000
Korteweg-de Vries isc	spectral defor	mations	

$$V_{,\tau} - 6VV_{,x} + V_{,xxx} = 0$$

■ DT + inverse scattering to solve the KdV equation

C. S. Gardner et al., Phys. Rev. Lett. 19, 1095-1097 (1967)

$$V_{,\tau} - 6VV_{,x} + V_{,xxx} = 0$$

- DT + inverse scattering to solve the KdV equation
- KdV deformations of the frequency domain master equation

$$\begin{cases} V(x) \to V(\tau, x) \\ \psi(x) \to \psi(\tau, x) \\ k \to k(\tau) \end{cases}$$

M. L. and C. F. Sopuerta, Phys. Rev. D 104, 124068 (2021)

$$V_{,\tau} - 6VV_{,x} + V_{,xxx} = 0$$

- DT + inverse scattering to solve the KdV equation
- KdV deformations of the frequency domain master equation

$$\begin{cases} V(x) \to V(\tau, x) \\ \psi(x) \to \psi(\tau, x) \\ k \to k(\tau) \end{cases} \implies \qquad (k^2)_{,\tau} = 0$$

M. L. and C. F. Sopuerta, Phys. Rev. D 104, 124068 (2021)

$$V_{,\tau} - 6VV_{,x} + V_{,xxx} = 0$$

- DT + inverse scattering to solve the KdV equation
- KdV deformations of the frequency domain master equation

$$\begin{cases} V(x) \to V(\tau, x) \\ \psi(x) \to \psi(\tau, x) \\ k \to k(\tau) \end{cases} \implies \qquad (k^2)_{,\tau} = 0$$

• KdV equation as an integrable Hamiltonian system with infinite conserved quantities

$$I_n[V] = \int_{-\infty}^{\infty} dx \, P_n(V, V_{,x}, V_{,xx}, \ldots)$$

L. D. Faddeev and V. E. Zakharov, Funct. Anal. Appl. 5, 280-287 (1971)

$$V_{,\tau} - 6VV_{,x} + V_{,xxx} = 0$$

- DT + inverse scattering to solve the KdV equation
- KdV deformations of the frequency domain master equation

$$\begin{cases} V(x) \to V(\tau, x) \\ \psi(x) \to \psi(\tau, x) \\ k \to k(\tau) \end{cases} \implies \qquad (k^2)_{,\tau} = 0$$

• KdV equation as an integrable Hamiltonian system with infinite conserved quantities

$$I_n[V] = \int_{-\infty}^{\infty} dx \, P_n(V, V_{,x}, V_{,xx}, \dots) \quad \longrightarrow \quad \boxed{I_n[V] = I_n[V_{\rm RW}]}$$

M. L. and C. F. Sopuerta, Phys. Rev. D 104, 124068 (2021)

	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
000000	00	00	000000

Greybody factors from KdV integrals: moment problem methods

Landscape of master equations	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
000000	00	00	000000
BH scattering			

$$\psi(x,,k,\tau) = \begin{cases} a(k,\tau)e^{ikx} + b(k,\tau)e^{-ikx} & e^{ikx} & e^{ikx}$$

Landscape of master equations	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
000000	00	00	000000
BH scattering			

$$\psi(x,,k,\tau) = \begin{cases} a(k,\tau)e^{ikx} + b(k,\tau)e^{-ikx} & e^{ikx} & e^{ikx}$$

 Bogoliubov coefficients completely determine the greybody factors (and QNMs)

$$T(k,\tau) = |a(k,\tau)|^{-2}$$
, $R(k,\tau) = \left|\frac{b(k,\tau)}{a(k,\tau)}\right|^{2}$

Landscape of master equations	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
000000	00	00	000000
BH scattering			

$$\psi(x,,k,\tau) = \begin{cases} a(k,\tau)e^{ikx} + b(k,\tau)e^{-ikx} & e^{ikx} & e^{ikx}$$

 Bogoliubov coefficients completely determine the greybody factors (and QNMs)

$$T(k,\tau) = |a(k,\tau)|^{-2}$$
, $R(k,\tau) = \left|\frac{b(k,\tau)}{a(k,\tau)}\right|^{2}$

 Bogoliubov coefficients (and greybody factors) are conserved by DT and KdV deformations

 Trace identities: a set of integral equations that relate the KdV integrals to the greybody factors

$$(-1)^{n+1} \frac{I_{2n+1}}{2^{2n+1}} = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, k^{2n} \ln T(k)$$

Landscape of master equations Darboux covariance KdV deformations Greybody factors from KdV integrals 000000 00 00 00 00000 DTT 1 1 1 0 0 0 17 177 1 1

BH greybody factors from KdV integrals

 Trace identities: a set of integral equations that relate the KdV integrals to the greybody factors

$$(-1)^{n+1}\frac{I_{2n+1}}{2^{2n+1}} = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, k^{2n} \ln T(k)$$

A moment problem

The greybody factors in BH scattering processes are uniquely determined by the KdV integrals of the BH potential via a (Hamburger) moment problem

$$\mu_{2n} = \int_{-\infty}^{\infty} dk \, k^{2n} p(k)$$

where

$$\mu_{2n} = (-1)^n \frac{I_{2n+1}}{2^{2n+1}}, \quad p(k) = -\frac{\ln T(k)}{2\pi}$$

M. L. and C. F. Sopuerta, arXiv:2212.03732 [gr-qc]

			Greybody factors from KdV integrals
000000	00	00	0000000
Moment problem			

$$\mu_n = \int_{\mathcal{I}} dx \, x^n \, p(x) \quad n = 0, 1, 2, \dots$$

- Existence: Is there a function p(x) on \mathcal{I} whose moments are given by $\{\mu_n\}$?
- Uniqueness: Do the moments $\{\mu_n\}$ determine uniquely a distribution p(x) on \mathcal{I} ?

Construction: How can we construct all such probability distributions?

Landscape of master equations	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
000000	00	00	0000000

Moment problem

50 (^uD)⁻⁵⁰ $D_n =$ ÷ ٠ -100 i . . . -150 μ_{n+1} $|\mu_n|$ μ_{2n} 0 5 10 15 20 25 30 35 n

$$\Delta(n) = C^n(2n)! - \hat{\mu}_{2n} > 0$$

	Darboux covariance	KdV deformations	Greybody factors from KdV integrals
000000	00	00	0000000

Conclusions and outlook

	Darboux covariance	KdV deformations	Greybody factors from KdV integrals		
000000	00	00	000000		
Conclusions and Outlook					

- Construction of the solution in a forthcoming paper
- Complete picture of master equations for perturbations of non-rotating BHs and their connection to two different isospectral symmetries
- Explotation of the isospectral symmetries and KdV conserved quantities to determine that the BH greybody factors are completely determined by the KdV integrals (a covariant formulation) as a moment problem
- General framework: extensions to Kerr BH, modified theories of gravity, higher dimensions...

	Darboux covariance	KdV deformations	Greybody factors from KdV integrals		
000000	00	00	000000		
Conclusions and Outlook					

- Construction of the solution in a forthcoming paper
- Complete picture of master equations for perturbations of non-rotating BHs and their connection to two different isospectral symmetries
- Explotation of the isospectral symmetries and KdV conserved quantities to determine that the BH greybody factors are completely determined by the KdV integrals (a covariant formulation) as a moment problem
- General framework: extensions to Kerr BH, modified theories of gravity, higher dimensions...

Thank you!