Signatures of Collapsing Spherically Symmetric Distributions of Dust

Diogo Luís Farinha Gomes da Silva¹

with Prof. José Pizarro de Sande e Lemos

¹CENTRA, Department of Physics Instituto Superior Técnico

ISCTE, Tuesday, 20th December 2022

Supported by FCT grant: 2022.13617.BD

Diogo Silva (CENTRA, IST)

Signatures of Collapsing Sph. Sym. Dust

Gravitational Collapse by Oppenheimer and Snyder

For a spherically symmetric contracting body of dust:

$$\mathrm{d}s^2 = -\mathrm{d}\tau^2 + \mathrm{e}^{\omega}\,\mathrm{d}R^2 + \mathrm{e}^{\lambda}\,\mathrm{d}\Omega^2 \quad \text{with} \qquad T^{\alpha\beta} = \rho\,u^{\alpha}\,u^{\beta}$$

The solution is

Interior:
$$\mathrm{d}s^2 = -\mathrm{d}\tau^2 + \xi^2(\tau, R_0) \left(\mathrm{d}R^2 + R^2\mathrm{d}\Omega^2\right)$$

Exterior:
$$\mathrm{d}s^2 = -\mathrm{d}\tau^2 + \xi^{-1}(\tau, R) \left(\mathrm{d}R^2 + R^2\xi^3(\tau, R) \mathrm{d}\Omega^2\right)$$

With $\xi(\tau, R) = \left[1 - \frac{3}{2} \frac{(2M)^{1/2} \tau}{R^{3/2}}\right]^{2/3}$ the scale factor. The interior is a flat FLRW metric and at $\tau_{coll} = \frac{2R^{3/2}}{3(2M)^{1/2}}$ there is collapse. Dust was shown to collapse.

Junction Conditions I

We section spacetime and impose the metric to be some distribution

Continuity of the metric

$$[h_{ab}] = 0$$
, $h_{ab} = g_{\alpha\beta}e^{\alpha}_{a}e^{\beta}_{b}$

Continuity of the (extrinsic) curvature dependent on the boundary

$$S_{ab}=-rac{1}{8\pi}\left(\left[{{\mathcal K}_{ab}}
ight] -\left[{{\mathcal K}}
ight] h_{ab}
ight)$$

Choose interior and exterior spacetimes, conditions give the dynamics

Diogo Silva (CENTRA, IST)

Signatures of Collapsing Sph. Sym. Dust

XV BHW

Junction Conditions II

Assuming a non rotating, homogeneous, distribution of dust

Massive sphere ($T^{\alpha\beta} = \rho u^{\alpha} u^{\beta}$): Thin shell $(S^{ab} = \sigma u^a u^b)$: $[h_{ab}] = 0$ $[h_{ab}] = 0$ $[K_{ab}] = 0$ $[K_{ab}] \neq 0$ $S^{ab} = \sigma u^a u^b$ $\mathbf{T}^{ab} = \mathbf{\rho} \, u^a u^b$ Schwarzschild x^{α}_{+} , $g_{+\alpha\beta}$ Interior Minkowski Schwarzschild x_{-}^{α} , $g_{-\alpha\beta}$ x_{-}^{α} , $g_{-\alpha\beta}$ x_{\pm}^{α} , $g_{\pm\alpha\beta}$

Signatures of Collapsing Sph. Sym. Dust

Collapsing Stars (
$$T^{\alpha\beta} = \rho u^{\alpha} u^{\beta}$$
)

Consider for the interior a FLRW metric with k = 1 and $a \in [0, A]$:

$$\mathrm{d}s^{2} = \xi^{2}(\eta) \left[-\mathrm{d}\eta^{2} + \frac{\mathrm{d}a^{2}}{1-a^{2}} + a^{2} \mathrm{d}\Omega^{2} \right]$$

And for the exterior a Schwarzschild metric:

$$\mathrm{d}s^{2} = -\left(1 - \frac{2M}{R}\right)\mathrm{d}T^{2} + \left(1 - \frac{2M}{R}\right)^{-1}\mathrm{d}R^{2} + R^{2}\mathrm{d}\Omega^{2}$$

On the homogeneity of the star

$$[K_{ab}] = 0 \implies \dot{R}^2 = -A^2 + \frac{2M}{R}$$

Diogo Silva (CENTRA, IST)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Collapsing Bound Star

The interior parameterized solution

$$R(\eta) = rac{R_0}{2}(1+\cos\eta) \;, \;\; au(\eta) = rac{R_0}{2}(\eta+\sin\eta) \;, \;\; \xi(\eta) = \sqrt{rac{R_0}{2M}}R(\eta)$$

The exterior solution

$$T(R) = \sqrt{F(R)} + 2M \ln \left| \frac{G(R)}{R - 2M} \right| - \Delta \arccos(H(R))$$

with F(R), G(R) and H(R) regular functions of R, Δ a constant and $R_0 \equiv R(T = 0)$. The causal structure requires also,

EH:
$$\xi(\eta_A^{EH})A = 2M$$
, AH: $(\nabla g_{22}) \cdot (\nabla g_{22}) = 0$, LR: $ds^2 = 0$

Diogo Silva (CENTRA, IST)

く 何 ト く ヨ ト く ヨ ト

Causal Structure

Diogo Silva (CENTRA, IST)

Signatures of Collapsing Sph. Sym. Dust

XV BHW

7 / 14

Redshift

The exterior observer can observe the evolving redshift of light rays emitted from the star's surface

For $R_0 = 10^5 M$, the time to get to the photon sphere is: $M = 3M_{\odot} \implies t \approx 9$ minutes.

 $M = 100 M_{\odot} \implies t \approx 5$ hours.

Collapsing Thin Shells ($S^{\alpha\beta} = \sigma u^{\alpha} u^{\beta}$)

The interior is Minkowski

$$\mathrm{d}\boldsymbol{s}^2 = -\mathrm{d}\boldsymbol{t}_-^2 + \mathrm{d}\boldsymbol{r}_-^2 + \boldsymbol{r}_-^2 \,\mathrm{d}\Omega^2$$

and the exterior Schwarzschild

$$\mathrm{d}s^{2} = -\left(1 - \frac{2M}{r_{+}}\right)\mathrm{d}t_{+}^{2} + \left(1 - \frac{2M}{r_{+}}\right)^{-1}\mathrm{d}r_{+}^{2} + r_{+}^{2}\mathrm{d}\Omega^{2}$$

The localized distribution of the shell gives

$$[K_{ab}] \neq 0 \implies M = m\sqrt{\dot{R}^2 + 1} - \frac{m^2}{2R}$$

With $m = 4\pi\sigma R^2$.

Collapsing Bound Shell

We choose M < m from which

10/14

Diogo Silva (CENTRA, IST)

Signatures of Collapsing Sph. Sym. Dust

XV BHW

Bound Shell: Trajectories

M < m < 2M

m > 2M

Diogo Silva (CENTRA, IST)

Signatures of Collapsing Sph. Sym. Dust

XV BHW 11 / 14

Star and Thin Shell Comparison

- Junction conditions facilitate obtaining a description of spherically symmetric distributions of collapsing matter.
- Thin shells are simple and easy to solve but retain the general features of collapsing bodies.
- The interior observer can detect various events characteristic of black hole formation, but the exterior observer can also detect some signatures.

Thank you!

Diogo Silva (CENTRA, IST)

Signatures of Collapsing Sph. Sym. Dust

t XV BHW