Epicyclic Frequencies for a Generic Ultracompact Object

Phys.Rev.D 106 (2022) 6, 064054 [2207.08847]

Jorge F. M. Delgado ${ }^{1}$
jorgedelgado@ua.pt

${ }^{1}$ University of Aveiro, Portugal

Motivation

Motivation

Timelike Circular Orbits
Null Circular Orbits

Motivation

Timelike Circular Orbits
Null Circular Orbits
Innermost Stable Circular Orbit

Motivation

Timelike Circular Orbits
Null Circular Orbits Innermost Stable Circular Orbit
\rightarrow Inner edge of an accretion disk.
\rightarrow Cut-off frequency of the emitted synchrotron radiation.
\rightarrow Cut-off frequency of the GW produced by EMRIs.

Motivation

Timelike Circular Orbits Innermost Stable Circular Orbit

Null Circular Orbits Light-Ring
\rightarrow Inner edge of an accretion disk.
\rightarrow Cut-off frequency of the emitted synchrotron radiation.
\rightarrow Cut-off frequency of the GW produced by EMRIs.

Motivation

Timelike Circular Orbits Innermost Stable Circular Orbit
\rightarrow Inner edge of an accretion disk.
\rightarrow Cut-off frequency of the emitted synchrotron radiation.
\rightarrow Cut-off frequency of the GW produced by EMRIs.

Null Circular Orbits

 Light-Ring\rightarrow Inner edge of the shadow.
\rightarrow Real part of the frequency of quasi-normal modes.

Previous Result

For a generic stationary, axisymmetric, asymptotically flat compact object with a \mathbb{Z}_{2} symmetry,

Previous Result

For a generic stationary, axisymmetric, asymptotically flat compact object with a \mathbb{Z}_{2} symmetry,

Previous Main Result

The radial stability of a light-ring determines the possibility and the radial stability of timelike circular orbits around it.

Previous Result

Previous Main Result

The radial stability of a light-ring determines the possibility and the radial stability of timelike circular orbits around it.

Unstable TCOs

Previous Result

Previous Main Result

The radial stability of a light-ring determines the possibility and the radial stability of timelike circular orbits around it.

Unstable TCOs

TCOs forbidden

Vertical Stability?

Vertical Stability?

Generic spacetime,

$$
d s^{2}=g_{t t}(r, \theta) d t^{2}+2 g_{t \varphi}(r, \theta) d t d \varphi+g_{\varphi \varphi}(r, \theta) d \varphi^{2}+g_{r r}(r, \theta) d r^{2}+g_{\theta \theta}(r, \theta) d \theta^{2}
$$

Vertical Stability?

Generic spacetime,

$$
d s^{2}=g_{t t}(r, \theta) d t^{2}+2 g_{t \varphi}(r, \theta) d t d \varphi+g_{\varphi \varphi}(r, \theta) d \varphi^{2}+g_{r r}(r, \theta) d r^{2}+g_{\theta \theta}(r, \theta) d \theta^{2}
$$

Through the Lagrangian of a test particle and the constants of motion associated to the Killing vector fields, we introduce,

$$
\begin{gathered}
V_{\xi}(r, \theta) \equiv g_{r r} \dot{r}^{2}+g_{\theta \theta} \dot{\theta}^{2}=\xi+\frac{A(r, \theta, E, L)}{B(r, \theta)} \\
A(r, \theta, E, L)=g_{\varphi \varphi} E^{2}+2 g_{t \varphi} E L+g_{t t} L^{2}, \quad B(r, \theta)=g_{t \varphi}^{2}-g_{t t} g_{\varphi \varphi}
\end{gathered}
$$

Vertical Stability?

Generic spacetime,

$$
d s^{2}=g_{t t}(r, \theta) d t^{2}+2 g_{t \varphi}(r, \theta) d t d \varphi+g_{\varphi \varphi}(r, \theta) d \varphi^{2}+g_{r r}(r, \theta) d r^{2}+g_{\theta \theta}(r, \theta) d \theta^{2}
$$

Through the Lagrangian of a test particle and the constants of motion associated to the Killing vector fields, we introduce,

$$
\begin{gathered}
V_{\xi}(r, \theta) \equiv g_{r r} \dot{r}^{2}+g_{\theta \theta} \dot{\theta}^{2}=\xi+\frac{A(r, \theta, E, L)}{B(r, \theta)} \\
A(r, \theta, E, L)=g_{\varphi \varphi} E^{2}+2 g_{t \varphi} E L+g_{t t} L^{2}, \quad B(r, \theta)=g_{t \varphi}^{2}-g_{t t} g_{\varphi \varphi}
\end{gathered}
$$

Circular motion can be found by solving,

$$
V_{\xi}(r, \theta)=0, \quad \partial_{r} V_{\xi}(r, \theta)=0, \quad \partial_{\theta} V_{\xi}(r, \theta)=0 .
$$

Vertical Stability?

$$
V_{\xi}(r, \theta) \equiv g_{r r} \dot{r}^{2}+g_{\theta \theta} \dot{\theta}^{2}=\xi+\frac{A(r, \theta, E, L)}{B(r, \theta)}
$$

Vertical Stability?

$$
V_{\xi}(r, \theta) \equiv g_{r r} \dot{r}^{2}+g_{\theta \theta} \dot{\theta}^{2}=\xi+\frac{A(r, \theta, E, L)}{B(r, \theta)}
$$

Radial Perturbation

$$
r=r^{\mathrm{cir}}+\delta r \Rightarrow \dot{r}=\dot{\delta}_{r}
$$

Vertical Stability?

$$
V_{\xi}(r, \theta) \equiv g_{r r} \dot{r}^{2}+g_{\theta \theta} \dot{\theta}^{2}=\xi+\frac{A(r, \theta, E, L)}{B(r, \theta)}
$$

Radial Perturbation

$$
r=r^{\mathrm{cir}}+\delta r \Rightarrow \dot{r}=\dot{\delta}_{r}
$$

Radial Epicyclic Frequency:

$$
\left(\nu_{\xi}^{r}\right)^{2}=-\frac{1}{2} \frac{\partial_{r}^{2} V_{\xi}}{g_{r r}}\left[\frac{B}{E g_{\varphi \varphi}+L g_{t \varphi}}\right]^{2}
$$

Vertical Stability?

$$
V_{\xi}(r, \theta) \equiv g_{r r} \dot{r}^{2}+g_{\theta \theta} \dot{\theta}^{2}=\xi+\frac{A(r, \theta, E, L)}{B(r, \theta)}
$$

Radial Perturbation

$$
r=r^{\mathrm{cir}}+\delta r \Rightarrow \dot{r}=\dot{\delta_{r}}
$$

Vertical Perturbation
$\theta=\pi / 2+\delta \theta \Rightarrow \dot{\theta}=\dot{\delta_{\theta}}$

Radial Epicyclic Frequency:

$$
\left(\nu_{\xi}^{r}\right)^{2}=-\frac{1}{2} \frac{\partial_{r}^{2} V_{\xi}}{g_{r r}}\left[\frac{B}{E g_{\varphi \varphi}+L g_{t \varphi}}\right]^{2}
$$

Vertical Stability?

$$
V_{\xi}(r, \theta) \equiv g_{r r} \dot{r}^{2}+g_{\theta \theta} \dot{\theta}^{2}=\xi+\frac{A(r, \theta, E, L)}{B(r, \theta)}
$$

Radial Perturbation

$$
r=r^{\mathrm{cir}}+\delta r \Rightarrow \dot{r}=\dot{\delta}_{r}
$$

Radial Epicyclic Frequency:

$$
\left(\nu_{\xi}^{r}\right)^{2}=-\frac{1}{2} \frac{\partial_{r}^{2} V_{\xi}}{g_{r r}}\left[\frac{B}{E g_{\varphi \varphi}+L g_{t \varphi}}\right]^{2}
$$

Vertical Perturbation

$$
\theta=\pi / 2+\delta \theta \Rightarrow \dot{\theta}=\dot{\delta_{\theta}}
$$

Vertical Epicyclic Frequency:

$$
\left(\nu_{\xi}^{\theta}\right)^{2}=-\frac{1}{2} \frac{\partial_{\theta}^{2} V_{\xi}}{g_{\theta \theta}}\left[\frac{B}{E g_{\varphi \varphi}+L g_{t \varphi}}\right]^{2}
$$

Epicyclic Frequencies

Epicyclic Frequencies

Null particles, $\xi=0$:

$$
\begin{array}{ll}
\text { Radial: } & \left(\nu_{0}^{r}\right)^{2}=-\frac{1}{2}\left[\frac{\partial_{r}^{2} g_{\varphi \varphi} \sigma_{ \pm}^{2}+2 \partial_{r}^{2} g_{t \varphi} \sigma_{ \pm}+\partial_{r}^{2} g_{t t}}{g_{r r}}\right] \\
\text { Vertical: } & \left(\nu_{0}^{\theta}\right)^{2}=-\frac{1}{2}\left[\frac{\partial_{\theta}^{2} g_{\varphi \varphi} \sigma_{ \pm}^{2}+2 \partial_{\theta}^{2} g_{t \varphi} \sigma_{ \pm}+\partial_{\theta}^{2} g_{t t}}{g_{\theta \theta}}\right]
\end{array}
$$

Epicyclic Frequencies

Null particles, $\xi=0$:
Radial: $\quad\left(\nu_{0}^{r}\right)^{2}=-\frac{1}{2}\left[\frac{\partial_{r}^{2} g_{\varphi \varphi} \sigma_{ \pm}^{2}+2 \partial_{r}^{2} g_{t \varphi} \sigma_{ \pm}+\partial_{r}^{2} g_{t t}}{g_{r r}}\right]$
Vertical: $\quad\left(\nu_{0}^{\theta}\right)^{2}=-\frac{1}{2}\left[\frac{\partial_{\theta}^{2} g_{\varphi \varphi} \sigma_{ \pm}^{2}+2 \partial_{\theta}^{2} g_{t \varphi} \sigma_{ \pm}+\partial_{\theta}^{2} g_{t t}}{g_{\theta \theta}}\right]$
Timelike particles, $\xi=-1$:
Radial: $\quad\left(\nu_{-1}^{r}\right)^{2}=-\frac{1}{2}\left[\frac{\left(\partial_{r}^{2} g_{\varphi \varphi} \Omega_{ \pm}^{2}+2 \partial_{r}^{2} g_{t \varphi} \Omega_{ \pm}+\partial_{r}^{2} g_{t t}\right) B-2 C \beta_{ \pm}}{B g_{r r}}\right]$
Vertical: $\quad\left(\nu_{-1}^{\theta}\right)^{2}=-\frac{1}{2}\left[\frac{\partial_{\theta}^{2} g_{\varphi \varphi} \Omega_{ \pm}^{2}+2 \partial_{\theta}^{2} g_{t \varphi} \Omega_{ \pm}+\partial_{\theta}^{2} g_{t t}}{g_{\theta \theta}}\right]$

Connection between Null and Timelike Circular Orbits

$$
\text { At a light-ring, } \beta_{ \pm}=0 \text { and } \Omega_{ \pm}=\sigma_{ \pm} .
$$

Connection between Null and Timelike Circular Orbits

At a light-ring, $\beta_{ \pm}=0$ and $\Omega_{ \pm}=\sigma_{ \pm}$. Thus,

$$
\begin{aligned}
& \left(\nu_{-1}^{r}\right)^{2}=-\frac{1}{2}\left[\frac{\partial_{r}^{2} g_{\varphi \varphi} \sigma_{ \pm}^{2}+2 \partial_{r}^{2} g_{t \varphi} \sigma_{ \pm}+\partial_{r}^{2} g_{t t}}{g_{r r}}\right]_{\mathrm{LR}}=\left(\nu_{0}^{r}\right)^{2} \\
& \left(\nu_{-1}^{\theta}\right)^{2}=-\frac{1}{2}\left[\frac{\partial_{\theta}^{2} g_{\varphi \varphi} \sigma_{ \pm}^{2}+2 \partial_{\theta}^{2} g_{t \varphi} \sigma_{ \pm}+\partial_{\theta}^{2} g_{t t}}{g_{\theta \theta}}\right]_{\mathrm{LR}}=\left(\nu_{0}^{\theta}\right)^{2}
\end{aligned}
$$

Connection between Null and Timelike Circular Orbits

At a light-ring, $\beta_{ \pm}=0$ and $\Omega_{ \pm}=\sigma_{ \pm}$. Thus,

$$
\begin{aligned}
& \left(\nu_{-1}^{r}\right)^{2}=-\frac{1}{2}\left[\frac{\partial_{r}^{2} g_{\varphi \varphi} \sigma_{ \pm}^{2}+2 \partial_{r}^{2} g_{t \varphi} \sigma_{ \pm}+\partial_{r}^{2} g_{t t}}{g_{r r}}\right]_{\mathrm{LR}}=\left(\nu_{0}^{r}\right)^{2} \\
& \left(\nu_{-1}^{\theta}\right)^{2}=-\frac{1}{2}\left[\frac{\partial_{\theta}^{2} g_{\varphi \varphi} \sigma_{ \pm}^{2}+2 \partial_{\theta}^{2} g_{t \varphi} \sigma_{ \pm}+\partial_{\theta}^{2} g_{t t}}{g_{\theta \theta}}\right]_{\mathrm{LR}}=\left(\nu_{0}^{\theta}\right)^{2}
\end{aligned}
$$

New Main Result

The radial stability of a light-ring determines the possibility and radial stability of timelike circular orbits around it.

The vertical stability of a light-ring determines only the vertical stability of timelike circular orbits around it.

Illustrations

Fully stable LR:

TCOs forbidden

$$
\beta_{ \pm}(r)<0
$$

Illustrations

Fully stable LR:
Fully unstable LR:

Illustrations

Radially unstable and vertically stable LR:
Radially Unstable

Illustrations

Radially unstable and vertically stable LR:
Radially stable and vertically unstable LR:

Epicyclic Frequencies and Energy Conditions

Epicyclic Frequencies and Energy Conditions

Light-rings and the Null Energy Condition, $T_{\mu \nu} k^{\mu} k^{\nu} \geq 0$.

Epicyclic Frequencies and Energy Conditions

Light-rings and the Null Energy Condition, $T_{\mu \nu} k^{\mu} k^{\nu} \geq 0$.
Consider a null vector field, $k^{\mu}=b\left(\partial_{t}^{\mu}+\sigma_{ \pm} \partial_{\varphi}^{\mu}\right)$. Then,

$$
\left(\nu_{0}^{r}\right)^{2}+\left(\nu_{0}^{\theta}\right)^{2}=\frac{1}{b^{2}} T_{\mu \nu} k^{\mu} k^{\nu}
$$

Epicyclic Frequencies and Energy Conditions

Light-rings and the Null Energy Condition, $T_{\mu \nu} k^{\mu} k^{\nu} \geq 0$.
Consider a null vector field, $k^{\mu}=b\left(\partial_{t}^{\mu}+\sigma_{ \pm} \partial_{\varphi}^{\mu}\right)$. Then,

$$
\left(\nu_{0}^{r}\right)^{2}+\left(\nu_{0}^{\theta}\right)^{2}=\frac{1}{b^{2}} T_{\mu \nu} k^{\mu} k^{\nu}
$$

Timelike Circular Orbits and the Strong Energy Condition, $R_{\mu \nu} t^{\mu} t^{\nu} \geq 0$.

Epicyclic Frequencies and Energy Conditions

Light-rings and the Null Energy Condition, $T_{\mu \nu} k^{\mu} k^{\nu} \geq 0$.
Consider a null vector field, $k^{\mu}=b\left(\partial_{t}^{\mu}+\sigma_{ \pm} \partial_{\varphi}^{\mu}\right)$. Then,

$$
\left(\nu_{0}^{r}\right)^{2}+\left(\nu_{0}^{\theta}\right)^{2}=\frac{1}{b^{2}} T_{\mu \nu} k^{\mu} k^{\nu}
$$

Timelike Circular Orbits and the Strong Energy Condition, $R_{\mu \nu} t^{\mu} t^{\nu} \geq 0$.
Consider a timelike vector field tangent to a TCO, $t^{\mu}=a\left(\partial_{t}^{\mu}+\Omega_{ \pm} \partial_{\varphi}^{\mu}\right)$. Then,

$$
\left(\nu_{-1}^{r}\right)^{2}+\left(\nu_{-1}^{\theta}\right)^{2}=\frac{1}{a^{2}} R_{\mu \nu} t^{\mu} t^{\nu}+\frac{1}{2 g_{r r}} \frac{C \beta_{ \pm}}{B}
$$

Final Remarks

Final Remarks

We shown that for a very generic stationary, axisymmetric and asymptotically flat compact objects with a \mathbb{Z}_{2} symmetry,

Final Remarks

We shown that for a very generic stationary, axisymmetric and asymptotically flat compact objects with a \mathbb{Z}_{2} symmetry,

Improved Main Result

The radial stability of a light-ring determines the possibility and radial stability of timelike circular orbits around it.

The vertical stability of a light-ring determines only the vertical stability of timelike circular orbits around it.

Final Remarks

Radially unstable and vertically stable LR:
Radially stable and vertically unstable LR:

Final Remarks

Fully stable LR:
Fully unstable LR:

Final Remarks

Fully stable LR:

Fully unstable LR:

Thank you.

jorgedelgado@ua.pt
FCT
Fundação para a Ciência e a Tecnologia ministírió da ciência, trenologia e ensino superior

Generic Spacetime

(\mathcal{M}, g) is a stationary, axi-symmetric, asymptotically flat and $1+3$ dimensional spacetime.

- Two Killing vectors: $\left\{\eta_{1}, \eta_{2}\right\} \xrightarrow[\text { flatness }]{\text { asymptolically }}\left[\eta_{1}, \eta_{2}\right]=0$.
- Appropriated coordinate system (t, r, θ, φ) such that $\eta_{1}=\partial_{t}$ and $\eta_{2}=\partial_{\varphi}$.

We assume,

1. A north-south \mathbb{Z}_{2} symmetry.
2. Circularity. $\longrightarrow g_{\rho t}=g_{\rho \varphi}=0, \rho=\{r, \theta\}$

Gauge choice:
$\star r$ and θ are orthogonal.
\star Horizon located at constant radial coordinate: $r=r_{H} . \longrightarrow \quad g_{r \theta}=0, g_{r r}>0, g_{\theta \theta}>0$
Causality implies $g_{\varphi \varphi} \geq 0$

$$
d s^{2}=g_{t t}(r, \theta) d t^{2}+2 g_{t \varphi}(r, \theta) d t d \varphi+g_{\varphi \varphi}(r, \theta) d \varphi^{2}+g_{r r}(r, \theta) d r^{2}+g_{\theta \theta}(r, \theta) d \theta^{2}
$$

Circular Causal Orbits on the Equatorial Plane $\theta=\pi / 2$

Effective Lagrangian of a test particle,

$$
2 \mathcal{L}=g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}=\xi, \quad \xi \equiv \begin{cases}-1, & \text { timelike } \\ 0, & \text { null } \\ 1, & \text { spacelike }\end{cases}
$$

Constants of motion associated to the two Killing vectors: $E=g_{t \mu} \dot{x}^{\mu}$ and $L=g_{\varphi \mu} \dot{x}^{\mu}$.

$$
\begin{gathered}
2 \mathcal{L}=-\frac{A(r, E, L)}{B(r)}+g_{r r} \dot{r}^{2}=\xi \\
A(r, E, L)=g_{\varphi \varphi} E^{2}+2 g_{t \varphi} E L+g_{t t} L^{2}, \quad B(r)=g_{t \varphi}^{2}-g_{t t} g_{\varphi \varphi}
\end{gathered}
$$

Effective potential $V_{\xi}(r)$,

$$
V_{\xi}(r) \equiv g_{r r} \dot{r}^{2}=\xi+\frac{A(r, E, L)}{B(r)}
$$

Circular Causal Orbits on the Equatorial Plane $\theta=\pi / 2$

A particle will follow a circular orbit at $r=r^{\text {cir }}$ iff,

$$
\begin{array}{rll}
V_{\xi}\left(r^{\text {cir }}\right)=0 & \longrightarrow \quad A\left(r^{\text {cir }}, E, L\right)=-\xi B\left(r^{\text {cir }}\right) \\
V_{\xi}^{\prime}\left(r^{\text {cir }}\right)=0 \quad \longrightarrow \quad A^{\prime}\left(r^{\text {cir }}, E, L\right)=-\xi B^{\prime}\left(r^{\text {cir }}\right)
\end{array}
$$

The radial stability of such orbit can be verified by the sign of $V_{\xi}^{\prime \prime}\left(r^{\mathrm{cir}}\right)$,

Unstable Circular Orbits
Stable Circular Orbits
For a generic stationary spacetime we can find pairs of solutions corresponding to prograde orbits ($r_{+}^{\text {cir }}, E_{+}, L_{+}$) and retrograde orbits ($\left(r_{-}^{\text {cir }}, E_{-}, L_{-}\right)$.

Light-Rings $\xi=0$

For null particles, circular orbits are light-rings.

$$
\begin{array}{lll}
V_{0}\left(r^{\mathrm{LR}}\right)=0 & \longrightarrow & {\left[g_{\varphi \varphi} \sigma_{ \pm}^{2}+2 g_{t \varphi} \sigma_{ \pm}+g_{t t}\right]_{\mathrm{LR}}=0} \\
V_{0}^{\prime}\left(r^{\mathrm{LR}}\right)=0 & \longrightarrow \quad\left[g_{\varphi \varphi}^{\prime} \sigma_{ \pm}^{2}+2 g_{t \varphi}^{\prime} \sigma_{ \pm}+g_{t t}^{\prime}\right]_{\mathrm{LR}}=0
\end{array}
$$

Solving both equations gives the inverse impact parameter $\sigma_{ \pm}=E_{ \pm} / L_{ \pm}$and the radial coordinate of the light-ring, $r=r^{L R}$.
The radial stability of the light-ring is evaluated by checking the sign of $V_{0}^{\prime \prime}\left(r^{L R}\right)$,

$$
V_{0}^{\prime \prime}\left(r^{\mathrm{LR}}\right)=L_{ \pm}^{2}\left[\frac{g_{\varphi \varphi}^{\prime \prime} \sigma_{ \pm}^{2}+2 g_{t \varphi}^{\prime \prime} \sigma_{ \pm}+g_{t t}^{\prime \prime}}{g_{t \varphi}^{2}-g_{t t} g_{\varphi \varphi}}\right]_{\mathrm{LR}}
$$

Positive Numerator
Unstable Light Ring

Negative Numerator
Stable Light Ring

Timelike Circular Orbits $\xi=-1$

Angular velocity of timelike particles, $\quad \Omega=\frac{d \varphi}{d t}=-\frac{E g_{t \varphi}+L g_{t t}}{E g_{\varphi \varphi}+L g_{t \varphi}}$
First equation: $V_{-1}\left(r^{\text {cir }}\right)=0$,

$$
\begin{gathered}
E_{ \pm}=-\left.\frac{g_{t t}+g_{t \varphi} \Omega_{ \pm}}{\sqrt{\beta_{ \pm}}}\right|_{r \mathrm{cir}}, \quad L_{ \pm}=\left.\frac{g_{t \varphi}+g_{\varphi \varphi} \Omega_{ \pm}}{\sqrt{\beta_{ \pm}}}\right|_{r \mathrm{cir}} \\
\beta_{ \pm}=-g_{t t}-2 g_{t \varphi} \Omega_{ \pm}-g_{\varphi \varphi} \Omega_{ \pm}^{2}
\end{gathered}
$$

Second equation: $V_{-1}^{\prime}\left(r^{\text {cir }}\right)=0$,

$$
\left[g_{\varphi \varphi}^{\prime} \Omega_{ \pm}^{2}+2 g_{t \varphi}^{\prime} \Omega_{ \pm}+g_{t t}^{\prime}\right]_{r \text { cir }}=0 \quad \longrightarrow \quad \Omega_{ \pm}=\left[\frac{-g_{t \varphi}^{\prime} \pm \sqrt{\left(g_{t \varphi}^{\prime}\right)^{2}-g_{t t}^{\prime} g_{\varphi \varphi}^{\prime}}}{g_{\varphi \varphi}^{\prime}}\right]_{r^{\text {cir }}}
$$

Radial Stability, $\quad V_{-1}^{\prime \prime}\left(r^{\mathrm{cir}}\right)=\left[\frac{g_{\varphi \varphi}^{\prime \prime} E_{ \pm}^{2}+2 g_{t \varphi}^{\prime \prime} E_{ \pm} L_{ \pm}+g_{t t}^{\prime \prime} L_{ \pm}^{2}-\left(g_{t \varphi}^{2}-g_{t t} g_{\varphi \varphi}\right)^{\prime \prime}}{g_{t \varphi}^{2}-g_{t t} g_{\varphi \varphi}}\right]_{r}$

