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Motivation

Timelike Circular Orbits

Innermost Stable Circular Orbit

→ Inner edge of an accretion disk.

→ Cut-off frequency of the emitted

synchrotron radiation.

→ Cut-off frequency of the GW produced by

EMRIs.

Null Circular Orbits

Light-Ring

→ Inner edge of the shadow.

→ Real part of the frequency of quasi-normal

modes.
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Previous Result

For a generic stationary, axisymmetric, asymptotically flat compact object with a Z2 symmetry,

Previous Main Result

The radial stability of a light-ring determines the possibility and the radial stability of timelike

circular orbits around it.

Unstable TCOs

Unstable
L
R

TCOs forbidden

β± < 0

TCOs forbidden

β± < 0

Stable
L
R

Stable TCOs
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Vertical Stability?

Generic spacetime,

ds2 = gtt(r , θ)dt2 + 2gtϕ(r , θ)dtdϕ+ gϕϕ(r , θ)dϕ2 + grr (r , θ)dr2 + gθθ(r , θ)dθ2

Through the Lagrangian of a test particle and the constants of motion associated to the Killing

vector fields, we introduce,

Vξ(r , θ) ≡ grr ṙ
2 + gθθ θ̇

2 = ξ +
A(r , θ,E , L)

B(r , θ)

A(r , θ,E , L) = gϕϕE
2 + 2gtϕEL + gttL

2 , B(r , θ) = g2
tϕ − gttgϕϕ

Circular motion can be found by solving,

Vξ(r , θ) = 0 , ∂rVξ(r , θ) = 0 , ∂θVξ(r , θ) = 0 .
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Vertical Stability?

Vξ(r , θ) ≡ grr ṙ
2 + gθθ θ̇

2 = ξ +
A(r , θ,E , L)

B(r , θ)

Radial Perturbation

r = r cir + δr ⇒ ṙ = δ̇r

Radial Epicyclic Frequency:

(νrξ)2 = −1

2

∂2
r Vξ
grr

[
B

Egϕϕ + Lgtϕ

]2

Vertical Perturbation

θ = π/2 + δθ ⇒ θ̇ = δ̇θ

Vertical Epicyclic Frequency:

(νθξ )2 = −1

2

∂2
θVξ
gθθ

[
B

Egϕϕ + Lgtϕ

]2
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Epicyclic Frequencies

Null particles, ξ = 0:

Radial: (νr0)2 = −1

2

[
∂2
r gϕϕσ

2
± + 2∂2

r gtϕσ± + ∂2
r gtt

grr

]
Vertical: (νθ0 )2 = −1

2

[
∂2
θgϕϕσ

2
± + 2∂2

θgtϕσ± + ∂2
θgtt

gθθ

]
Timelike particles, ξ = −1:

Radial: (νr−1)2 = −1

2

[(
∂2
r gϕϕΩ2

± + 2∂2
r gtϕΩ± + ∂2

r gtt
)
B − 2Cβ±

Bgrr

]

Vertical: (νθ−1)2 = −1

2

[
∂2
θgϕϕΩ2

± + 2∂2
θgtϕΩ± + ∂2

θgtt
gθθ

]
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Connection between Null and Timelike Circular Orbits

At a light-ring, β± = 0 and Ω± = σ±.

Thus,

(νr−1)2 = −1

2

[
∂2
r gϕϕσ

2
± + 2∂2

r gtϕσ± + ∂2
r gtt

grr

]
LR

= (νr0)2

(νθ−1)2 = −1

2

[
∂2
θgϕϕσ

2
± + 2∂2

θgtϕσ± + ∂2
θgtt

gθθ

]
LR

= (νθ0 )2

New Main Result

The radial stability of a light-ring determines the possibility and radial stability of timelike

circular orbits around it.

The vertical stability of a light-ring determines only the vertical stability of timelike circular

orbits around it.
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Illustrations

Fully stable LR:

TCOs forbidden

β±(r) < 0

Fully

Stable
L
R

Fully Stable

TCOs

Fully unstable LR:

Fully Unstable

TCOs

Fully Unstable
L
R

TCOs forbidden

β±(r) < 0
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Illustrations

Radially unstable and vertically stable LR:

Radially Unstable

TCOs
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Epicyclic Frequencies and Energy Conditions

Light-rings and the Null Energy Condition, Tµνk
µkν ≥ 0.

Consider a null vector field, kµ = b(∂µt + σ±∂
µ
ϕ). Then,

(νr0)2 + (νθ0 )2 =
1

b2
Tµνk

µkν

Timelike Circular Orbits and the Strong Energy Condition, Rµνt
µtν ≥ 0.

Consider a timelike vector field tangent to a TCO, tµ = a(∂µt + Ω±∂
µ
ϕ). Then,

(νr−1)2 + (νθ−1)2 =
1

a2
Rµνt

µtν +
1

2grr

Cβ±
B
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Final Remarks

We shown that for a very generic stationary, axisymmetric and asymptotically flat compact

objects with a Z2 symmetry,

Improved Main Result

The radial stability of a light-ring determines the possibility and radial stability of timelike

circular orbits around it.

The vertical stability of a light-ring determines only the vertical stability of timelike circular

orbits around it.
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Final Remarks

Radially unstable and vertically stable LR:

Radially Unstable

TCOs

Radial Unstable
L
R

TCOs forbidden

β±(r) < 0
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Vertically Unstable
L
R

Vertically Unstable

TCOs

11
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jorgedelgado@ua.pt
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Generic Spacetime

(M, g) is a stationary, axi-symmetric, asymptotically flat and 1+3 dimensional spacetime.

• Two Killing vectors: {η1, η2}
asymptotically−−−−−−−−→

flatness
[η1, η2] = 0.

• Appropriated coordinate system (t, r , θ, ϕ) such that η1 = ∂t and η2 = ∂ϕ.

We assume,

1. A north-south Z2 symmetry.

2. Circularity. −→ gρt = gρϕ = 0 , ρ = {r , θ}

Gauge choice:

? r and θ are orthogonal.

? Horizon located at constant radial coordinate: r = rH .
−→ grθ = 0 , grr > 0 , gθθ > 0

Causality implies gϕϕ ≥ 0

ds2 = gtt(r , θ)dt2 + 2gtϕ(r , θ)dtdϕ+ gϕϕ(r , θ)dϕ2 + grr (r , θ)dr2 + gθθ(r , θ)dθ2
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Circular Causal Orbits on the Equatorial Plane θ = π/2

Effective Lagrangian of a test particle,

2L = gµν ẋ
µẋν = ξ , ξ ≡


−1 , timelike

0 , null

1 , spacelike

Constants of motion associated to the two Killing vectors: E = gtµẋ
µ and L = gϕµẋ

µ.

2L = −A(r ,E , L)

B(r)
+ grr ṙ

2 = ξ

A(r ,E , L) = gϕϕE
2 + 2gtϕEL + gttL

2 , B(r) = g2
tϕ − gttgϕϕ

Effective potential Vξ(r),

Vξ(r) ≡ grr ṙ
2 = ξ +

A(r ,E , L)

B(r)
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Circular Causal Orbits on the Equatorial Plane θ = π/2

A particle will follow a circular orbit at r = r cir iff,

Vξ(r cir) = 0 −→ A(r cir,E , L) = −ξB(r cir)

V ′ξ(r cir) = 0 −→ A′(r cir,E , L) = −ξB ′(r cir)

The radial stability of such orbit can be verified by the sign of V ′′ξ (r cir),

V ′′ξ (r cir) =
A′′(r cir,E , L) + ξB ′′(r cir)

B(r cir)

V ′′ξ (r cir) > 0

Unstable Circular Orbits

V ′′ξ (r cir) < 0

Stable Circular Orbits

For a generic stationary spacetime we can find pairs of solutions corresponding to prograde

orbits (r cir
+ ,E+, L+) and retrograde orbits (r cir

− ,E−, L−).
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Light-Rings ξ = 0

For null particles, circular orbits are light-rings.

V0(rLR) = 0 −→
[
gϕϕσ

2
± + 2gtϕσ± + gtt

]
LR

= 0

V ′0(rLR) = 0 −→
[
g ′ϕϕσ

2
± + 2g ′tϕσ± + g ′tt

]
LR

= 0

Solving both equations gives the inverse impact parameter σ± = E±/L± and the radial

coordinate of the light-ring, r = rLR.

The radial stability of the light-ring is evaluated by checking the sign of V ′′0 (rLR),

V ′′0 (rLR) = L2
±

[
g ′′ϕϕσ

2
± + 2g ′′tϕσ± + g ′′tt
g2
tϕ − gttgϕϕ

]
LR

Positive Numerator

Unstable Light Ring

Negative Numerator

Stable Light Ring
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Timelike Circular Orbits ξ = −1

Angular velocity of timelike particles, Ω =
dϕ

dt
= − Egtϕ + Lgtt

Egϕϕ + Lgtϕ

First equation: V−1(r cir) = 0,

E± = −gtt + gtϕΩ±√
β±

∣∣∣∣∣
r cir

, L± =
gtϕ + gϕϕΩ±√

β±

∣∣∣∣∣
r cir

β± = −gtt − 2gtϕΩ± − gϕϕΩ2
±

Second equation: V ′−1(r cir) = 0,

[
g ′ϕϕΩ2

± + 2g ′tϕΩ± + g ′tt
]
r cir = 0 −→ Ω± =

−g ′tϕ ±
√

(g ′tϕ)2 − g ′ttg ′ϕϕ

g ′ϕϕ


r cir

Radial Stability, V ′′−1(r cir) =

[
g ′′ϕϕE

2
± + 2g ′′tϕE±L± + g ′′ttL

2
± − (g2

tϕ − gttgϕϕ)′′

g2
tϕ − gttgϕϕ

]
r cir
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