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Plan of the talk

� Motivation

� Brief summary of the results obtained previously in the static case

� Adding rotatation to the system and studying the dragging effects

� Preliminary results and possible improvements
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Introduction

Motivation

Black Hole accretion system: understanding the motion of test-particles using
simplyfied models via numerical simulations which account only for the gravitational
fields and adding gradually features that makes the model ”more astrophisical” as
possible.
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GR and chaos

General relativity is an highly non linear theory
⇒ relativistic system prone to chaos:

� Cosmological model
� test-particle motion around black hole X

Kerr-Newman family: isolated, stationary, asymptotically flat BH solution are full
integrable but...
⇒ small perturbation lead to chaotic dynamics:

� spin of the test-particle
� background perturbations X

⇒ there are several type of background perturbations:
� additional multipoles
� magnetic fields
� adding exact fields with specific symmetries X
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Integrability of geodesic motion

1 Schwarzschild: static, spherically symmetric space-time, asymptotically flat
(vacuum)

� Energy ⇔ Stationarity (R) time-traslation(1 killing vector)

� L = (Lx , Ly , Lz ) ⇔ Spherical symmetry SO(3) (3 killing vector)

� Particle’s mass ⇔ normalization of four-velocity

2 Kerr: stationary, axi-symmetric space-time, asymptotically flat (vacuum)
� Energy ⇔ Stationarity (R), time-translation (1 killing vector)

� Laxis ⇔ SO(2)(1 killing vector)

� Particle’s mass ⇔ normalization of four-velocity

� Carter constant ⇔ corresponds to the total angular momentum plus a precisely defined part
which is quadratic in the linear momenta (1 killing tensor)

C.Caputo Chaos XV BH Workshop 5 26



Why Geodesic Chaos?

Realistic astrophysical model of black holes are non-isolated and the
surrounding material may affect higher derivatives of the metric leading to a
destabilization of the motion and, in general, to the occurrence of chaos.
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Assumptions

1 Stationarity

2 Matter flow has axially symmetric disc geometry and follows circular orbits
(circular spacetimes)

Physical Interpretation of the discs

• one-component perfect fluid with proper azimuthal pressure, proper surface
density and velocity

• two-component dust on circular orbits about the central black hole which in the
stationary case are two counter-rotating geodesic. streams characterized by their
proper densities σ± and velocities v±.
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Static setting
Geodesic motion in static, axially-symmetric spacetime

Weyl metric in cylindrical coordinates

ds2 = −e2ν(ρ,z)dt2 + ρ2e−2ν(ρ,z)dφ2 + e [2λ(ρ,z)−2ν(ρ,z)](dρ2 + dz2)

∇2ν = 0 λ =

∫ ρ,z

axis

ρ
[
(ν2
,ρ − ν2

,z)dρ+ 2ν,ρν,z dz
]

Constants of motion

� energy: E = e2νut

� azimuthal angular momentum: Lz = ρ2e−2νuφ

� mass of the particle: gµνu
µuν = −1

No complete integrability of the motion (in general)
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Reduced Lagrangian

−e−2νE 2 + e2ν L
2
z

ρ2
+ e2(λ−ν)

[
(uρ)2 + (uz)2

]
= −1

The non trivial motion is characterized by (ρ, z , uρ, uz). It means that it is
equivalent to a 2d Hamiltonian system and it is confined on 3d hypersurfaces.
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Poincaré surfaces of section

Let be H an Hamiltonian autonomous system with 2n degree of freedoms. Since the
energy is conserved the phase space can be reduced to 2n − 1-surfaces.
A surface of section is then obtained by

1 qi = const, set another degree of freedom as constant

2 take the value of the other 2n − 2 degrees of freedom
(p1, . . . , p(n−2), q1, . . . , q(n−2)), each time the orbits cross the hyper surface
defined by qi = const (in a fixed direction)

Remarks

• Resonant tori: manifest itself as infinite set of points;

• Non- resonant tori: appear as a succession of points which cover densely the
invariant curves.
PS give an overall view of the dynamics of the system and of the
accessible states of the system
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Free motion around black hole with discs or rings:
between integrability and chaos- I-II-III

Perturbation scheme: ν = νSchw + ν̂

• Bach Weyl ring

• inverted 1st/4th counter-rotating Morgan-Morgan disc

• power law disc

Methods for detecting chaos:

• Poincaré surfaces of section for z = 0

• time series and the corresponding power spectra of (ur , z , longitudinal action)

• recurrence plots

• Kaplan Glass method based on tracing directions

• Lyapunov-type coefficients (mLCE, FLI, MEGNO)
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Summary of results for Poincaré surfaces of section:

1 The dynamics tends to be regular for both very small and very large values of
(E , Lz) and the parameters of the disc (M, rdisc);

2 The more compact is the source, the more chaotic is the behaviour.

C.Caputo Chaos XV BH Workshop 12 26



Summary of results for Poincaré surfaces of section:
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References for the static setting
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Adding much more fun: Rotation and dragging effects
Geodesic motion in static, axially-symmetric, orthogonally transitive spacetimes

Bardeen-Torne-Cartan metric in isotropic coordinates

ds2 = −e2ν(r ,θ)dt2+B(r , θ)2r2e−2ν(r ,θ) sin2 θ(dφ−ω(r , θ)dt)2+e [2λ(r ,θ)−2ν(r ,θ)](dr2+r2dθ2)

Remarks

• Weyl coordinate ρ = r sin θ, z = r cos θ

• ν, λ, ω,B to be determined by Einstein field equations

B: B,ρρ +
2Bρ
ρ

+ B,zz = 8πB(Tρρ + Tzz)

vacuum : Tµν = 0

{
B = 1

B = 1− M2

4(ρ2+z2)
= 1− M2

4r2

⇒ horizon

{
ρ = 0, |z | ≤ M

r = M
2

• After applying adequate boundary conditions at infinity, on the axis and at the horizon, the
remaining non-liner coupled equations must be solved for ν and ω and finally λ is obtained by
line integration.

• Analytically solution only for static case ω = 0
• Non static case:

1 generating technique
2 perturbative approach X
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Slowly rotating thin disc with constant Newtonian surface density

� Will 1974: Schwarzschild BH plus a slowly rotating light concentric thin ring
obtained in terms of a multipole expansion of the mass and spin perturbation
series.

� P. Č́ıžek and O.- Semerák 2017:at the first perturbative order obtained the
solution, in terms of elliptical integrals, of a rotating disc with a constant
Newtonian surface density encircling a Schwarzscild BH.

B can be chosen as above mentioned
ν will be the sum of the Schwarzschild part plus the disc potential:

ν(x , θ) = νSchw + V (x ′ = xout , θ)− V (x ′ = xout , θ)

V (x ′; x , θ) =2ΠS |z̃|H(ρ̃′ − ρ̃)−
2S√

(ρ̃′ + ρ̃)2 + z̃2

{ [
ρ̃′ + ρ̃)2 + z̃2

]
E(k)

+ (ρ̃′2 − ρ̃2)K(k) + z̃2 ρ̃
′ − ρ̃
ρ̃′ + ρ̃

Π

[
4ρ̃′ρ̃

(ρ̃′ + ρ̃)2
, k

]} (1)

ω is a very long expression that can be found in the references
λ can be obtained as line integral as in the static case (at first order)
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Reduced Lagrangian stationary case

−e−2ν(E − Lzω)2 + e2ν L
2
z

ρ2
+ e2(λ−ν)

[
(uρ)2 + (uz)2

]
= −1

Reduced Lagrangian static case

−e−2νE 2 + e2ν L
2
z

ρ2
+ e2(λ−ν)

[
(uρ)2 + (uz)2

]
= −1

The allowed region of the phase-space changes
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References for this perturbative solution

1 Semerák, O.; Č́ıžek, P. Rotating Disc around a Schwarzschild Black Hole. Universe 2020, 6, 27.

2 P. Č́ıžek and O. Semerák 2017 ApJS 232 14

3 P. Kotlǎŕık, O. Semerák and P. Č́ıžek, “Schwarzschild black hole encircled by a rotating thin disc:

Properties of perturbative solution,” Phys. Rev. D 97 (2018) no.8, 084006
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GRAVIT: the implementation of the solution and the numerical study

GRAVIT,1988,Miroslav Zacek

The code used to study the geodesic motion in a given spacetime. It is written in c++
and adjusted by P. Suková for the static study. The algorithm used for the integration
of the motion is the Huta RK of 6th order with 8 correctors.

GRAVIT II, 2021-22

It is the code modified by me to implement the above solution and verified the
hypothesis that the dragging effect would led to a damping of the chaotic behaviour of
the orbits.
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xout = 6 xin = 5, S = 0.001, E = 0.995 Lz = 3.75, τ = 100000M

Figure: W=0.0

Figure: W=0.20

Figure: W=0.10

Figure: W=0.25
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xout = 12 xin = 11, S = 0.001, E = 0.995 Lz = 3.75, τ = 100000M

Figure: W=0.0

Figure: W=0.6

Figure: W=0.2

Figure: W=1.0
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xout = 30 xin = 29, S = 0.001, E = 0.995 Lz = 3.75, τ = 100000M

Figure: W=0.0

Figure: W=0.20

Figure: W=0.10

Figure: W=0.25
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xout = 8 xin = 5, S = 0.002, E = 0.995 Lz = 3.75, τ = 100000M

Figure: W=0.0

Figure: W=0.20

Figure: W=0.10

Figure: W=0.30
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Rotation and chaos in the literature

1 Chaos and rotating black holes with halos
P.S. Letelier (Campinas State U., IMECC), W.M. Vieira (Campinas State U., IMECC),
Phys.Rev.D 56 (1997), 8095-8098

2 Stability of Orbits around a Spinning Body in a Pseudo-Newtonian Hill Problem
A.F. Steklain (Campinas State U., IMECC), P.S. Letelier (Campinas State U., IMECC),
Phys.Lett.A 373 (2009), 188-194

3 Influence of the black hole spin on the chaotic particle dynamics within a dipolar halo
Sankhasubhra Nag, Siddhartha Sinha, Deepika B. Ananda, Tapas K Das, Astrophys.Space Sci.
362 (2017) 4, 81

4 Stealth Chaos due to Frame Dragging
Andrés F. Gutiérrez-Ruiz, Alejandro Cárdenas-Avendaño, Nicolás Yunes, Leonardo A.
Pachón,abff99 (publication)
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Overall picture

• The frame dragging induced by rotation of the system seems to lead to a
suppression of the chaotic behaviour

• The counter-rotating motion appears to be more unstable than the co-rotating
motion
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Preliminary results and possible improvements

Preliminary results

Increasing the angular momentum of the disc, apparently, the chaotic behaviour of the
dynamics seems to decrease.

� Improvements

⇒ The accuracy of the integrator can be improved implementing in the code another
integrator with adaptive step-size;

⇒ Turn back to the static case and analyse the effect of the edge/s on the chaotic
behaviour comparing the first order Morgan-Morgan inverted disc, with an edge,
with the family of the Inverted inverted Kuzmin-Toomre discs, which have no
edges.
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Thank you!
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