

Rack cooling studies at the TIF (bldg 186) **Giacomo Fedi (Imperial College London)**

10 May 2022 - 17th xTCA Interest Group Meeting

1

Motivations

- By design, racks at P5 (CMS cavern) have a **10kW limitation** (6-7 kW nominal)
- Check at the max allowed power if the rack design works properly
 - Check if the **inlet temperature** in each shelf is optimal
 - Check if the amount of **heat leakage**
- Understand if the TIF setup needs improvements
- Check the adopted configuration **solutions**

Bldg 186 : TIF

Heater board (200 to 800W configurable)

A16 TIF rack

Some boards were left inserted but not activated

- Shelf fan speed kept constant 10/15 (500W per shelf)
- 2U bottom heat exchanger at TIF while 1U in the current CMS proposal

CMS proposal

Тор

Shelf

Sensors

- Hall air temperature
- External rack temperature
- Rack water flow
- Air loop temperature
- Inlet/outlet water temperature
- Fan tray temperatures (left/center/right) x4
- PSU temperature
- PEM temperature
- Power @PSUs and before them
- More...

T3: temperature sensor

Power meters

Monitoring power

Water flow in our rack

Water temperature (inlet/outlet)

<u>Ref</u>

Powers

- Data is sent to a Graphite/Grafana monitoring system
- Shelves power plot shows the PSUs, power meters, total injected power, and the calculated extracted power by using the information from the left hand side plots
- Test have been done gradually increasing the power from 1.2kW to 10kW (about 800W increment)
- At max power we tried to increase the water flow by closing the circuit for two unused racks

Monitoring temperatures

Bottom shelf temperatures

Test begin: 1.2kW

Test end: 10.0kW

Top shelf temperatures

Test begin: 1.2kW

Test end: 10.0kW

See next slides for more insights

Air temperatures

Air loop temperature

Rack external temperature

Ambient temperature

- Air temperatures in the rack loop, just outside the rack, and the temperature of the TIF hall
- We used this if info to try to model the rack-ambient heat exchange

Data analysis

- Data imported from graphite db (TIF monitoring system) to pandas dataframe
- Inputs averaged on stable periods (GMT time)

```
stable ranges = {
    "1.2k" : ["2022-02-09 9:50","2022-02-09 10:19"],
    "2.1k": ["2022-02-09 10:37","2022-02-09 11:03"],
    "2.9k": ["2022-02-09 11:07","2022-02-09 11:38"],
    "3.8k": ["2022-02-09 12:00","2022-02-09 12:54"],
    "4,7k": ["2022-02-09 13:05","2022-02-09 13:30"],
    "5.5k": ["2022-02-09 13:42","2022-02-09 13:53"],
    "6.4k": ["2022-02-09 14:06","2022-02-09 14:22"],
    "7.3k": ["2022-02-09 14:37","2022-02-09 14:54"],
    "8.1k": ["2022-02-09 15:06","2022-02-09 15:30"],
    "9.0k": ["2022-02-09 15:43","2022-02-09 15:59"],
    "a10.0k": ["2022-02-09 16:27","2022-02-09 16:34"],
    "b10.0k": ["2022-02-09 16:44","2022-02-09 16:56"]
```

}

Two measurements done with the same power but different water flow

Checking Eltek PSU

Temperature of the PSUs

- Installing the PSU on the back part of the rack doesn't create any temperature issue
- PPSU efficiency is pretty high and the heat that leaks from the rack doesn't seem to be a problem

Eltek module specifications

OUTPUT DATA			
Voltage (default)	53.5 V _{DC}		
Voltage (adjustable range)	43.5 - 57.6 V _{DC}		
Power (maximum) @ nominal input	1000 W	1800 W	
Power @ 85 VAC	420 W	700 W ²⁾	
Current (maximum) @ nominal input	20.9 A (@V _{OUT} < 48V _{DC})	37.5 A (@V _{OUT} < 48V _{DC})	
Hold up time, maximum output power	>20ms; output voltage > 41 V _{DC}	>10ms; output voltage > 42 V	
Current sharing (10 - 100% load)	±5% of maximum current from 10 to 100% load		
Static Voltage regulation (10 - 100% load)	±0.5%		
Dynamic Voltage regulation	±5.0% for 10-90% or 90-10% load variation, regulation time < 50ms		
Ripple	< 150 mV _{PP} , 30 MHz bandwidth		
Protection	ORing FET, Short circuit proof, High temperature protection, Over voltage Shu		
OTHER SPECIFICATIONS			
Efficiency	Up to 95.5 %	Up to <mark>95.8 %</mark>	

Checking shelf power modules

• Shelf power modules are not overheating

Rack thermal equilibrium

- by the chiller.
- The power removed exceeds the injected power at low power and viceversa at high power
- The two equal around 5kW, a similar equilibrium is found between the ambient temperature and the shelf temperature measured in the shelf manager
 - This suggests that there is a non-negligible radiative component

Temperature sensors

• Left hand side plot shows the total injected power measured at the power meters versus the power removed

Air temperature in the shelves

10kW flow: 18 l/min

- Inlet and outlet temperatures measured at the fan trays in three positions: left, center, right
- Each shelf has a bottom and a top fan tray
- We care about the inlet temperature because it could jeopardise the ATCA board cooling
- At the TIF the inlet temperature reaches 30C which is not optimal

10kW flow: 20 l/min

10kW flow: 18 l/min

10kW flow: 20 I/min

Extrapolations

Water flow rate in our rack

Water flow extrapolation

Increase of water flow rate

- Last two measurements done at 10kW
 - •One with 18 l/min flow
 - •One with 20 l/min flow
- •Here we try to extrapolate the **top shelf inlet** temperature as function of the water flow
- •The extrapolation is affected by non-negligible uncertainties and the assumption of linearity
- It looks like we should **double the water flow rate** to have more inlet temperature values

Decrease of water temperature

- Another leverage for improvements is the water **temperature** from the chiller. 16C during this test. It can be lowered by 1-2C depending on the condensation issue.
- Cannot be lowered at TIF, but it might be done in P5 USX

Conclusions

- General rack design is validated
 - PSU configuration ok
 - 48V cabling ok
- But an higher water flow is needed If we want to reach the max power 10kW to guarantee an optimal **board cooling performance**
- TIF A16 looks ok up to 5kW then we have to be aware that **cooling is** underperforming
- Rack heat leaking might not be negligible, but it depends on the cavern temperature

Heat exchangers

Top-view with complete 19"-rack-mount-frame:

View <u>without</u> frame (coil only):

20 l/min = 1.20 m3/h 18 l/min = 1.08 m3/h

ENERGY BALANCES @ 7KW

$\rho_{water} = 1007 \frac{kg}{m^3}$				
ΔT_{water} [K]	$\dot{V}_{water} [m^3/h]$			
5	1,18			
6	0,99			
7	0,85			
8	0,74			
10	0,59			
12	0,49			
15	0 39			

 $c_{p,water} = 4.23 \frac{kJ}{kg * K}$

$$\mathbf{P}[\mathbf{W}] = \dot{\mathbf{m}} * \mathbf{c}_{p} * \Delta \mathbf{T} = \rho * \dot{\mathbf{V}} * \mathbf{c}_{p} * \Delta \mathbf{T}$$
$$\dot{\mathbf{V}} = \frac{\mathbf{P}}{\rho * \mathbf{c}_{p} * \Delta \mathbf{T}}$$
kl

$$c_{p,air} = 1.0 \frac{kg}{kg * K}$$
 $\rho_{air} = 1.17 \frac{kg}{m^3}$

∆ <i>T_{air}</i> [K]	$\dot{V}_{air} \left[m^3 / h \right]$	
5	4165	
8	2603	
10	2083	
12	1736	
15	1388	
18	1157	
20	1041	

WATER COIL CALCULATIONS

	@ 7 kW	@ 7 kW	@ 7.7 kW	@ 7
Water Flow [m ³ /h]	0,9	1,0	0,9	1
Air Flow [m ³ /h]	2080	2080	2080	20
Cold Air Temp. [°C]	24,5	24,2	25,4	25
Hot Air Temp. [°C]	35	35	37,1	37
Supply Water Temp. [°C]	15	15	15	1
Return Water Temp. [°C]	21,7	21,2	22,4	21
Cooler Power [W]	7000	7170	7700	79
Air Side Pressure Drop [Pa]	95	95	95	9
Water Side Pres. Drop [kPa]	47	57	47	5

Simulations

 From: <u>https://indico.cern.ch/event/489996/contributions/2289631/</u> attachments/1345278/2028007/xTCA IG Sep2016 ATCA specs.pdf

1. First simulation run

- 2 x 13U Asis Chassis.
- Chassis air flow bottom up.
- Up to 400W per blade, and 50W RTM
- Heat Exchange 1U, water cooling 16 C

A slide shows that without the turbine, is it better?

Shelf airflow

Figure 20: Front Board Air Flow 11990-190

	Zone 1	Zone 2	Zone 3	Zone 4	2	2
	[m ³ /h]	[cfm]				
Slot 1	37,4	34,2	33,7	36,3	141,5	83,3
Slot 2	37,0	31,8	36,6	34,7	140,1	82,4
Slot 3	39,0	35,6	34,1	25,7	134,4	79,1
Slot 4	43,4	40,0	34,4	29,4	147,2	86,6
Slot 5	42,2	37,4	32,1	36,1	147,7	86,9
Slot 6	40,2	38,6	34,9	39,6	153,3	90,2
Slot 7	36,1	31,9	37,8	32,7	138,4	81,4
Slot 8	41,9	38,4	34,7	28,0	143,0	84,1
Slot 9	42,4	40,3	35,5	33,8	152,0	89,4
Slot 10	41,6	38,2	33,7	37,6	151,0	88,8
Slot 11	39,9	37,5	39,6	42,6	159,6	93,9
Slot 12	37,0	34,3	39,5	32,4	143,1	84,2
Slot 13	43,3	40,9	37,5	29,4	151,1	88,9
Slot 14	42,1	39,4	35,4	31,9	148,9	87,6
Σ	563,5	518,3	499,5	470,1	2051,4	1206,7

Anemometer: testo 425 Accuracy: ~5% Measured inside the ATCA shelf Board setup: like picture

Air speed [m/s] Vs. Fan speed for bottom part

- Target shelf fan speed is 10/15 for our racks
- The linearity of the air flow Vs fan speed has been measured in a Comtel shelf -> assume 2/3 of air flow for this validation -> 1350 m3/h as total air flow

Shelf power rails

Manager. This topology is used to keep the max. current per branch less then 35 A.

12711840

Rack thermal modelling

R^2: 0.9997

R^2 (simple model): 0.72

- During a period where the shelves were off, data was collected to understand the cooling performance as function of different temperatures
- We tried two linear models, one which depends on air loop and external temperatures, and one which depends only on the difference between the water temperature and the ambient temperature
- Both models reproduced the data in case of shelves turned off, but failed reproducing the behaviour once the shelves were activated (injected power was taken into account)
- Linear model failure is another hint of radiative thermal exchange

Not easy to model, Google tells too https://deepmind.com/blog/article/deepmind-ai-1@duces-google-data-centre-cooling-bill-40

