
OpenIPMC-HW
AN OPEN-SOURCE MEZZANINE WITH A CUSTOMIZABLE

FIRMWARE FOR ELECTRONIC APPLICATIONS

André Cascadan, Luigi Calligaris, Antonio Bassi (SPRACE - UNESP)

17TH XTCA INTEREST GROUP - MAY/22

ATCA boards for CMS Phase-2 tracker

2

Serenity board (Imperial College London & KIT)
● Outer Tracker Data Trigger and Control (DTC)
● Total of 216 to be used
● ATCA standard, swappable FPGA mezzanine

Apollo board (Boston and Cornell Universities)
● Inner Tracker DTC and Track Finder
● Total of 28 (DTC) + 162 (TF) to be used
● ATCA standard, two-pieces board

○ Services + Optical/Processing

○ OpenIPMC(-SW) → Software for IPMI function

○ OpenIPMC-HW → IPMC mezzanine board

○ OpenIPMC-FW → Firmware for the mezzanine

A note on naming

○ PICMG-compliant IPMI functions
● Power negotiation and hot-swap (M-states, handle, etc.)
● Instantiate board sensor records, declare them to ShM, read-out and publish data
● Focus on simplicity: optional functions can be added to the project by the user

○ Portable, platform-independent design, written in C
● Can quickly port the project to different architectures (e.g. ZynqMP, ESP32, STM32)

○ Based on FreeRTOS operating system
● Can run independent “tasks” in parallel. (w/ prioritization)
● Flexible software development, thanks to task decoupling.
● Supported by many SoC manufacturers. (TI, NXP, ST, Xilinx, Microsemi…)

○ OpenIPMC is free and open source software
● Can be easily customized to fit a new board, and modified to be debugged.
● No need to sign NDAs for contributors, curious newcomers and students.

4

OpenIPMC-SW software

○ Open hardware platform for IPMC software (like OpenIPMC)
● Developed in collaboration with Karlsruhe Institute of Technology (KIT).
● Complements OpenIPMC to realize a fully open IPMC platform.
● Designed using the CERN-sponsored KiCAD EDA suite.

○ Compatible with LAPP/CERN IPMC carrier board interface
● JEDEC MO-244 LP-DIMM form factor: 82,0 x 18,3 mm.
● Compatible with the new UART scheme (SoC debug via SOL + IPMC debug + SoC configuration).
● 9 sets of AMC control pins + all remaining LAPP GPIOs routed to the DIMM connector.

○ Hardware components
● Low-cost components, in current production, with long lifecycle.
● STMicroelectronics STM32H745 Microcontroller.

○ Extensive documentation & free toolchain/IDE software (STM32CubeIDE).

○ Relatively simple manufacturing
● 8 layers FR4, no buried/blind vias, 0.8 mm pitch BGA, needs hard gold edge fingers.

5

OpenIPMC-HW mezzanine

6

OpenIPMC-HW layout: schematic

7

OpenIPMC-HW layout: picture

SPI IO expanders
(Microchip MCP23S17)

PHY 25 MHz
crystal

PHY led

Ethernet PHY
(Microchip KSZ8091MNX)

MCU decoupling
and thermal vias

USB ESD TVS

IPMB I2C
isolation buffer

(Linear LTC4300-1)

Micro-USB B

MCU LSE
32 kHz crystal

MCU

MCU HSE
25 MHz crystal

3.3V rail ORing
power switch

(TI TPS2115ADRBR)

SPI IO expanders
(Microchip MCP23S17)

Vusb to 3.3 V LDO
SWD and UART0

lead holesMCU reset NAND Flash
(W25N01GVZEIG)

JEDEC MO-244 connector

IPMB I2C
isolation buffer

(Linear LTC4300-1)

18.3 mm height allows
to fit in ATCA crate

using a vertical DIMM slot

8

○ Characteristics
● Developed with STM32CubeIDE (supports Make as well).
● Multitasking provided by FreeRTOS.

○ Components
● OpenIPMC-FW

○ Access to the resources available on the mezzanine
● File system on flash memory, Network

○ Common services
● CLI/printf via Telnet, UART and USB VCP.
● Xilinx XVC (to be implemented).

○ Common interfaces to the ATCA board.
● Common to all carriers: I2C, GPIOs, UART, JTAG.

○ Common API

● OpenIPMC-FW board-specific code
○ High-level functions specific to each ATCA board

● Sensors, boot sequence, monitoring policy…
○ Access to the ATCA board through the common API

OpenIPMC-FW
High-level Abstract API

Hardware-level API

○ Each board has its own custom OpenIPMC-FW project
● Accounts for what sits in the ATCA carrier (sensors, etc…)

○ OpenIPMC-FW sits as a submodule of the project
● Board-specific project adds OpenIPMC-FW into it
● Clear code separation
● Keep IPMC tools dev. independent from the board
● Simplify code updates
● Contains main makefile

○ Example board-specific repo
● OpenIPMC-FW-board-specific-demo
● Basic example code
● Reference makefile to integrate board-specific code
● gitlab-ci.yml for automatic build

○ Generates binary and HPM.1 remote upgrade file

9

OpenIPMC-FW Repo Structure

Board-specific
FW project

OpenIPMC-FW
(generic)

OpenIPMC

YAFFSprintf

TerminalTelnet

● openipmc-fw-serenity
● openipmc-fw-apollo
● openipmc-fw-pulsar

https://gitlab.com/openipmc/openipmc-fw-board-specific-demo

● OpenIPMC (as a portable submodule)
○ Interprets the IPMI commands associated to HPM.1
○ Manages the long-duration commands

● IPMI commands which take more the standard response time (eg: generate backup copy)

○ Use the HAL interface to call hardware-aware functions
● Initiate backup copy, Upload FW Image Bytes, Activate FW, Rollback, etc.

● OpenIPMC-FW
○ Initializes OpenIPMC submodule with upgrade capabilities and current FW info
○ Implements the upgrade HAL callbacks, which involve operation over hardware

● Read from internal STM32 Flash
● Read/write over external Flash on DIMM
● Control OpenIPMC-FW bootloader
● System Reset, Control STM32 Option Bits (change boot address)

● Bootloader
○ A Bootloader was developed to help the image swap in the STM32 internal Flash (process described later)
○ It is a separate project available here
○ It must be installed at final portions of the STM32 Internal Flash

10

Implementation of HPM.1

https://gitlab.com/openipmc/openipmc-fw-bootloader

FW Upgrade steps
1. The current OpenIPMC-FW makes a copy of itself into the External Flash (backup)
2. The current FW receives the new version via IPMI and saves it into the External Flash (temp)
3. The current FW reboots changing the boot address to 0x081E 0000 (bootloader)
4. The bootloader runs, and copy the new FW to the 0x0800 0000 position
5. Bootloader jumps to the FW at 0x0800 0000

0x0800 0000

Bootloader

0x081E 0000

OpenIPMC-FW
(running area)

ST
M

32
Fl

as
h

0x0000 0000

OpenIPMC-FW
(Backup area)

TEMP_ADDR

OpenIPMC
(temp area for new version)

Ex
te

rn
al

Fl
as

h

11

File system in OpenIPMC-HW

● Flash memory on OpenIPMC-HW DIMM card
○ 3V, 1G-bit NAND flash Winbond W25N01GVZEIG (or compatible W74M01GVZEIG).

○ Connected via QuadSPI bus to the MCU.

● YAFFS
○ “Yet Another Flash File System”

○ Designed specifically for NAND and NOR chips using wear-leveling techniques.

● Embedded robustness
○ Supports SLC as well as MLC flash devices.

○ Low run-time RAM footprint.

12

YAFFS-2 Integration Process
● YAFFS Direct Interface (YDI)

○ Provides a set of POSIX-compliant functions.

○ Ready to configure environment. System integrator needs to provide

a few callbacks for RTOS interfacing and resource access.

○ Built-in debugging mechanism : YAFFS trace.

● Flash Device
○ For flash device operations to be executed, some driver callbacks

must be defined.

○ Flash device driver functions must be provided.

○ Flexible partition control : YAFFS parameter tuning.

● Performance Evaluation
○ YAFFS was first implemented on a emulated flash device using a

static RAM memory inside the MCU in order to debug and pinpoint

possible integration errors.

Adapted from https://yaffs.net/documents/yaffs-direct-interface
13

YAFFS-2 Integration into FW
● UNIX-style Command Line Interface (CLI)

○ Running on openIPMC-FW terminal process.

○ mount, umount, ls, cd, mkdir, rm…
○ CLI implements POSIX-Compliant functions to manage

file system.

● File System Utilities
○ YAFFS is currently operating on an onboard 128 MB

(1G-bit) flash memory.

○ A logging task was implemented (ipmc_scribe).

● Preliminary tests
○ Robust against power failures.

○ Mounting time not perceivable from CLI.

14

Production
○ Prototype production by three institutes → test the “ease of production”

● No significant issues, some lessons learned
● Board v1.0 was followed by v1.1

○ Karlsruhe Institute of Technology - KIT (Germany)
● PCB outsourced, in-house assembly
● 16 prototypes v1.0 nov/2020 + 50 boards v1.1 june/2021

○ Boston University (USA)
● PCB and assembly outsourced
● 8 boards v1.1 jan/2021

○ São Paulo
● 20 boards planned to be produced in 2021

○ Chip shortage forced us to reduce to 12 boards v1.1 (dec/21)
○ PCB and assembly outsourced to Brazilian companies

● Plan to produce in Brazil more boards 2022/2023
○ Chip shortage may continue to impact production 😒
○ TPS2115ADRBR is estimated to be available in Feb/2023

15

Production

Boards produced in Brazil (dec/2021) Boards produced in Germany (june/2021)16

17

Dev tools: Breakout Board

17

RJ45

miniDIMM socket

LEDs

Handle
Switch

Power cons.
probe

3D model for the breakout board Manufactured PCBs for the breakout board

DC Jack

○ Useful for tests and basic developments
○ Very cheap and simple to produce

Test Tools: Manufacturing Test Board

○ Uses a healthy board to quickly test a lot of production
● Checks all connections and board functionalities
● One UART of both are used for communication

○ Two complementary firmwares:
● TESTER firmware

○ Controlled via PC console (USB VCP)
○ Sends test commands to DUT
○ Monitors test output
○ Prints results on PC console (USB VCP)

● DUT (Device Under Test) firmware
○ Programmed into the MCU via USB DFU
○ Responds to commands from TESTER

TESTER

DUT

TESTER VCP

DUT DFU
(cable not

fitted here)

18

Test setups
○ OpenIPMC-HW currently being tested on 3 ATCA boards

● Pulsar-IIb, at SPRACE (São Paulo).
● Serenity, at KIT (Germany) and CERN TIF.
● Apollo, at Boston University.

○ Stress tests running for months
● 6 Serenity and 7 PulsarIIb boards since May/21
● Critical issues were being detected in meanwhile

○ Eg: IPMB collision avoidance mechanism

○ Soon large-scale testing
● Fill 2-4 crates with 14 OpenIPMCs each.

19 Pulsar-IIb @ SPRACE Apollo @ BU Serenity @ KIT

20

Summary and outlook
○ The OpenIPMC project is now divided in three subprojects

● OpenIPMC (aka OpenIPMC-SW) → Software providing IPMI behavior (Mozilla Public License 2.0)
● OpenIPMC-HW → Mezzanine (CC BY-NC-SA 4)
● OpenIPMC-FW → Firmware for the mezzanine (GNU GPL 3)

○ Common part
○ ATCA carrier-specific part

○ Total 85 boards produced and being used in tests
● Firmware customized for Apollo, Serenity and Pulsar-IIb so far

○ New features being added
● Integration of TFTP with YAFFS (network transfer of files in the flash) → ongoing
● Xilinx Virtual Cable implementation → ongoing
● DHCP discovery with Client ID (“option 61”) → planned
● Hardware watchdog against FW freezes → planned

A pesquisa aqui apresentada recebe o suporte da FAPESP (processos 2018/18955-0 e 2019/18166-9)

Thanks from the SPRACE team!

21

BACKUP

23

Lead times
● Lead times for the missing silicon devices used by OpenIPMC-HW
● Updated on 9th-May-22
● MCU is the most critical: Lead Time from Newark is June/23

Mouser Digikey Description

ADM7172ACPZ-3.3-R7 Jan/23 June/22 Voltage Regulator

USBLC6-2P6 Sep/22 Mar/23 ESD protection for USB

KSZ8091MNX Oct/22 Feb/23 Ethernet PHY

MCP23S17-E/ML Mar/23 Jan/23 GPIO expander

TPS2115ADRBR May/23 Feb/23 Power OR’ing logic

STM32H745XIH6 N/A N/A Microcontroller

*Best lead times in bold

24

Collision avoidance
● Important IPMI reliability fix recently implemented
● Commited on 3rd May
● Tests in KIT started in 6th May on 8 Pulsar2b boards

Number of M4->M7 state events per day: before and after collision avoidance mechanism

After

Before

Other IPMC alternatives
○ Thought experiment: consider ATCA boards designed by an user

○ e.g. the Serenity or the Apollo boards for the CMS tracker

○ The IPMC is specific to that board design
○ Different boards have different components

○ CPUs, FPGAs, hard disks, radio transceivers, …
○ The IPMC needs to know how to turn them on/off
○ The IPMC needs to know how to read temp/voltage/...

○ The board designer chooses an IPMC for the board
○ This can be an IPMC designed by him...
○ ...or an IPMC designed by someone else
○ What counts is the configuration of the IPMC for that board

○ LHC expts adopted an IPMC DIMM standard by LAPP (Annecy, FR)
○ LAPP IPMC module was quite complicated → abandoned
○ FNAL IPMC designed uniquely for Pulsar2b (fw by SPRACE)
○ CERN IPMC is the adaptation of a commercial product by PPS

○ BIG problems with license, NDAs, support...

25

LAPP IPMC

FNAL IPMC

CERN IPMC

Evolution of OpenIPMC support on different devices

26

○ First platform: Cortex-R5 cores on Zynq US+
○ IPMC (R5) and Linux (A53) running in the same device
○ Targeting the ATCA-ZynqMP management module by KIT (proposed for Serenity-A2577)

○ Portability exercise: ESP32 microcontroller
○ Not a “serious” device, but very different arch from Zynq, cheap and very flexible

○ First mainstream MCU: STM32 microcontroller
○ Successful porting opened the way to design of the DIMM module

27

Choice of the microcontroller
○ The OpenIPMC software runs on top of FreeRTOS

○ Software shown to be easily portable on new MCUs (~3 wks)
○ Plenty of MCU manufacturers to choose from

○ We chose STM32H745XIH6 by STMicroelectronics
○ Number of I2C/SPI hardware peripherals → 4 / 6
○ Number of GPIOs/UART/USART → up to 168 / 4 / 4
○ Availability of an free toolchain → STM32CubeIDE
○ Availability of an evaluation board → NUCLEO-H745ZI-Q (cost: 23 CHF)
○ Our experience with other STM32 MCUs → STM32F103C8T6 (e.g. “Blue pill” board)
○ Performance margin for future upgrades → 480 MHz Cortex-M7+240 MHz Cortex-M4
○ Large SRAM/Flash memories → 1024 kiB / 2048 kiB
○ Expected reliability of the manufacturer → STMicroelectronics is a leader in MCUs
○ Cost → 17.45 $ per piece

○ What we get in addition
○ High speed USB device/host/OTG → USB programming & terminal
○ Efficient SMPS to power the core → better thermals
○ External memory support → store config/firmwares/etc
○ Lots of other features we will not use (e.g. HDMI driver)

STM32 NUCLEO-H745ZI-Q

Full documentation on ST site

https://www.st.com/en/microcontrollers-microproce
ssors/stm32h745-755.html#documentation

https://www.st.com/en/microcontrollers-microprocessors/stm32h745-755.html#documentation
https://www.st.com/en/microcontrollers-microprocessors/stm32h745-755.html#documentation

28

OpenIPMC-HW DIMM connections

Note: among the GPIOs some pins can be configured as UARTs, following the SoC Interest group layout

29

This layer allows the OpenIPMC to be
attached to the platform, and is the part

that needs to be always defined by the user

The ipmc_ios interface can
use the i2c functions in the

driver to run the IPMB

User can
implement its

own interface to
manage specific

peripherals in the
platform

OpenIPMC runtime structure
○ Two interfaces between OpenIPMC hardware-agnostic code and hardware drivers

○ Hardware Abstraction Layer→ interface to hardware driver used for IPMI functions (IPMB, blue led..)

○ Board-specific controls → customize board-specific behavior (how to turn on power, read sensors..)

○ Other tasks (not shown in picture) can run aside of the OpenIPMC stack

● Cores
○ 1x ARM Cortex-M7 (480 MHz max)
○ 1x ARM Cortex-M4 (240 MHz max)

● Package
○ 265-TFBGA
○ 14x14mm
○ 0.8mm pitch

● Memory
○ 2x 1 Mbyte Flash
○ 64 I + 128 D Kbytes TCM (M7 only)
○ 864 Kbytes SRAM

● Power
○ Input 1.62 to 3.6 V
○ Integrated SMPS+LDO

● IOs
○ 168x GPIOs
○ 4x I2C
○ 6x SPI
○ 8x UART
○ Ethernet MAC
○ USB host/device/OTG
○ Quad-SPI

● Others
○ LCD-TFT
○ JPEG Codec
○ ADCs
○ DACs
○ OpAmps
○ Graphical Accelerator

STM32H745XI Microcontroller: specs

30

TFBGA 240+25

31

Sensor readings

Sensor reading test: Shelf Manager CLI is printing the sensor readings of Serenity @ KIT.

HotSwap Sensor

IPMB Sensor

Temperature
form PIM400

Current on PIM400

Voltage on -48 line
(Channels A and B)

● Hardware Platform Management IPM Controller Firmware Upgrade Specification
○ Released by PICMG
○ Specifies a set of IPMI commands to upload a new FW or rollback to backup copy
○ Upgrade is remotely operated by an Upgrade Agent tool (eg: ipmitool , ipmiutil)
○ The Upgrade Agent reads the new image(s) from a standard *.hpm file

● HPM.1 has multi-component support (firmware for each IPMC component)

● Upgrade is intermediated by Shelf Manager
○ Upgrade Agent sends IPMI commands to ShMM via Network (System Manager)
○ ShMM forwards the commands to the target IPMC via IPMB

32

The HPM.1 Specification

● Speaks with an IPMC remotely
○ Runs in PC, uses IPMI commands over Ethernet to communicate.

● Is guided by a standard Upgrade Image file (*.hpm)
○ One header describes the manufacturer, product, upgrade capabilities, etc.
○ Several actions guide the upgrade sequence of different components

● Types of actions: Backup, Prepare, Upload (contains image)
● Actions are executed in sequence as they appear in the file

● Checks consistency between running and new firmware before upgrade
○ Manufacturer ID and Product ID must match the expected ones
○ The new version can specify the oldest version from which an upgrade is allowed

● OpenIPMC-FW project provides a program to pack the compiled .bin into an .hpm
○ Version and Product information is extracted from the .bin
○ Instructions here

33

The Upgrade Agent

https://openipmc.gitlab.io/openipmc-fw/firmware_upgrade/#generating-hpm-file

34

The Upgrade Agent - ipmitool example

List the images
present on IPMC
per component Note: Bootloader is listed as a

separate component to allow an
independent upgrade via HPM.1

Compare current image
with the new version in
upgrade.hpm

35

The Upgrade Agent - ipmitool example

List the images
present on IPMC
per component
AFTER UPGRADE

new firmware

old firmware copied to backup

(before upgrade)

FW Upgrade steps
1. OpenIPMC-FW makes a copy of itself into the external Flash present on DIMM. This

operation is triggered by a command from Upgrade Agent, following the actions
present in the .hpm file

Bootloade
r

0x0800 0000

OpenIPMC-FW
(Current, running) Bootloader

(STM32 default boot ADDR, non volatile)

0x081E 0000

ST
M

32
 F

la
sh

Bootloade
r

0x0000 0000

OpenIPMC-FW
(Backup area)

TEMP_ADDR

Ex
t

Fl
as

h

(Empty)

FW Upgrade steps
2. The Upgrade Agent uploads the new image, which is saved in a temporary area of

the external Flash

Bootloade
r

0x0800 0000

OpenIPMC-FW
(Current, running) Bootloader

LOAD-BIN

0x081E 0000

ST
M

32
 F

la
sh

Bootloade
r

0x0000 0000

OpenIPMC-FW
(Backup area)

TEMP_ADDR

Ex
t

Fl
as

h

OpenIPMC-FW
(New FW, Temp area)

(STM32 default boot ADDR, non volatile)

New FW image
uploading

FW Upgrade steps
3. By receiving the activate command from the Agent, OpenIPMC-FW writes control

data to the Bootloader informing the position of the new firmware
4. Set boot address in NV memory to Bootloader region and reboot

a. (note: this is important just the first upgrade, as the bootloader is meant to always run on boot)

Bootloade
r

0x0800 0000

OpenIPMC-FW
(Current, running) Bootloader

0x081E 0000

ST
M

32
 F

la
sh

Bootloade
r

0x0000 0000

Ex
t

Fl
as

h

OpenIPMC-FW
(New FW, Temp area)

(STM32 modified boot ADDR, non volatile)

TEMP_ADDR

TEMP_ADDR

OpenIPMC-FW
(Backup area)

Backup RAM

FW Upgrade steps
5. Bootloader reads the control data
6. Bootloader copies the new FW from TEMP to the RUN area
7. Bootloader jumps to new FW

Bootloade
r

OpenIPMC-FW
(New FW)

Bootloader
(Running)

0x081E 0000

ST
M

32
 F

la
sh

Bootloade
r

0x0000 0000

Ex
t

Fl
as

h

OpenIPMC-FW
(New FW, Temp area)

OpenIPMC-FW
(Backup area)

0x0800 0000

(STM32 modified boot ADDR, non volatile)
Backup RAM

TEMP_ADDR

TEMP_ADDR

● Upload with checksum
○ HPM.1 specifies a completion code to signalise a checksum failure during the upload step
○ The image is uploaded with a CRC32 appended to its end, so IPMC can check the integrity
○ The CRC32 is also saved to the TEMP area, so the bootloader can check the integrity

● Backup with checksum
○ The backup copy receives a CRC32 at the end, so the bootloader can check the integrity

● Bootloader
○ Bootloader is a very simple firmware

● Single task, no RTOS
● Peripherals: QSPI (for Ext. Flash), CRC32 calculator, UART-TX (for printouts)

○ Safety mechanisms still to be implemented
● Watchdog can be employed for an auto-rollback in case of failure in new firmware
● In case of power loss during the copy, Bootloader is able to recognise the corrupted copy

40

Firmware upgrade safety

File system in OpenIPMC-HW

○ Flash memory on OpenIPMC-HW DIMM card
● 3V, 1G-bit NAND flash Winbond W25N01GVZEIG (or compatible W74M01GVZEIG).

● Connected via QuadSPI bus to the MCU.

○ Benefits of a File System
● Can be mounted as an USB mass storage device or accessed via TFTP.

● Logs storage.

○ Abnormal sensor readings, error logs, etc.

● Can be used to store IPMC configuration parameters

○ Sensor thresholds, IP address, etc.

○ Choice of a file system
● Needs to be robust against bad blocks (to be expected in flash storage).

● Properly spread the data writes, to extend flash lifetime as much as possible.

YAFFS-2

○ YAFFS
● “Yet Another Flash File System”

● Designed specifically for NAND and NOR chips using

wear-leveling techniques.

○ “True Log-structured”, i.e.
● Sequential page writing within a block of memory.

● No deletion markers used in flash memory.

○ File state is described by the last sequential update of

the file content.

○ Uses page-level partial updates of file content.

○ Embedded robustness
● Supports SLC as well as MLC flash devices.

● Low RAM footprint.

