
A Kubernetes-based
Analysis Facility at

UChicago

Lincoln Bryant, Rob Gardner, Fengping Hu, David Jordan, Judith Stephen, Andrew Taylor, Ilija Vukotic, Farnaz Golnaraghi
University of Chicago

HSF Analysis Facilities Forum Kickoff Meeting
25 March 2022

1

https://indico.cern.ch/event/1132360/

Why Analysis Facilities? Why Kubernetes?

● There is a need to provide infrastructure to support highly
interactive, bursty workloads not covered by grid infrastructure (*)

● A number of interesting new analysis frameworks are being
developed, many of which have adopted Kubernetes as an enabling
technology

● Need flexibility to support both traditional batch and interactive
capabilities for LHC Run 3, and forward-looking technologies for
HL-LHC R&D

(*) Future Analysis Systems and Facilities, IRIS-HEP blueprint meeting, October 26-27, 2020
2

https://iris-hep.org/as.html
https://iris-hep.org/as.html
https://indico.cern.ch/event/960587/

Designed for easy onboarding and use

3

Architecture overview

4

Hardware Description

● Equipment and design chosen to provide interactive logins, 1000
analysis cores, 1 PB of user storage and 25Gbps switching infrastructure
within a fixed budget

● 16 "hyperconverged" nodes to provide both storage and compute
capacity

○ Dual AMD Epyc 7402, 512 GB RAM, 16TB HDDs and 1TB NVMes for Ceph, 2TB SSDs for

dedicated scratch space for batch

● 16 “compute only” nodes – dell R750
○ Dual Intel Xenon Gold 6348, 28C/56T, 384 GB, 10x 3.2 TB NVMe, 25GbE

● 2 GPU nodes - Dell XE8545
○ Dual AMD 7543 2.8GHz (32-core/64-thread) CPU, 512GB RAM , 2x 960GB, SSD storage

(~2T /scratch), Dual Port 10/25GbE SFP28 w/ 10Gbps optics
○ 4x A100 GPU cards

● 6 Interactive nodes for traditional batch logins plus Jupyter notebooks.
○ Dual AMD Epyc 7402, 256 GB RAM

5

Zooming in on the Kubernetes pieces

6

Kubernetes - basic configurations and extensions

● OIDC authentication
○ cilogon

● Metallb
○ Currently on layer 2 mode
○ BGP mode can be explored too when needed

● Calico
○ Without network overlay/encapsulation – highest performance and

simplest network
○ ipv4/ipv6 dual stack configured

● Nginix Ingress controller and certificate cluster issuer with both http01
and dns01 solver 7

Kubernetes - extensions with operators

● Operators use crds and control loop, aims to capture the key aim
of a human operator who is managing a service or set of
services– you declare, I reconcile

● Many operators deployed
○ Fluxcd - gitops operator
○ Rook - storage operator
○ Kube-prometheus-stack - monitoring operator
○ Calico operator – network operator

8

Tools for declarative deployment - FluxCD

● Flux CD - "GitOps" style application
deployment
○ All configuration lives in GitHub,

installation/updates/removal all happen via
the Flux operator that uses Git as a single
source of truth for the cluster.

○ All of the basic Kubernetes extensions are

loaded into the Flux repo (Ingress, Load
Balancer, monitoring, certificate management,
etc)

○ Ceph, HTCondor, etc are also managed by Flux

9

Tools for declarative deployments - SLATE
● Federated service orchestration platform for K8S.
● Provides abstraction for users, groups using

federated ID (CI Logon / Globus) across many K8S
clusters

● Uses Helm to abstract away complex K8S APIs,
simplifying to a set of configuration values for each
app.
○ In SLATE, only trusted developers can build applications,

while operators can configure them.

● System administrators can register their cluster with
SLATE, allow groups and apps to deploy software.

● Operators can store deployments in GitHub and use
GitOps 10

on AF

A tour of some apps on the Analysis Facility

11

Rook

● Kubernetes-flavored Ceph, closely tracks
upstream releases

● Fully manages Ceph cluster on the AF via
Kubernetes Operator

● Very popular storage option in the
Kubernetes community

● A "graduated" project in the Cloud Native
Computing Foundation ecosystem.
○ i.e., multiple organizations committing code,

completed security audit, explicitly defined project
governance, etc.

12

Rook/Ceph configuration on the UC AF

● Goal: Provide a 1PB shared filesystem ($DATA) for users of the AF
● 228x 16TB HDDs configured for 3x replication

○ EC is tantalizing for the capacity gains, but we haven't had a good experience with it
elsewhere.

● Each node has a dedicated NVMe for Bluestore database (Metadata).
● Each node has a second dedicated NVMe for CephFS metadata
● CephFS configured with 6 MDSes

○ 3 active, 3 standby - floating on the Hyperconverged nodes.

● Filesystem mountable within Kubernetes and outside.
● Currently we are not using RADOSGW or RBD.

○ Tight focus on performant cluster filesystem for user data.
13

Ceph Dashboard

14

HTCondor Setup

● Single, unified queue presented to users
○ Any login node, any notebook sees the same queue

● Fully tokenized authentication
○ Each user has a $HOME/.condor directory that holds a

token allowing job submission to the remote schedd on a
shared filesystem

● All execute nodes live in Kubernetes
○ Piecemeal approach to moving daemons into K8S

15

HTCondor - Submit

● Goal: Provide O(1000) cores for batch analysis
● HTCondor 9.x with fully tokenized configuration
● Single schedd on dedicated "head" node, users see a single queue.

○ In the future, we will run multiple schedd queues and hash users across queues, if needed.

● Currently two of the "interactive" nodes are used as traditional
HTCondor submit points

● Every user has a submit token in ~/.condor/tokens.d to facilitate
'remote' submission

● Shared filesystem between submit points and schedd, so users don't
need to transfer files to the schedd.

16

HTCondor - Execute

● Completely managed by Kubernetes with a lot of nice features
● 80 logical cores per Worker, partitionable slots
● HTCondor pods are dynamically configured based on values from the

Kubernetes downward API, e.g.
resources:
 limits:
 cpu: "84"
 memory: "400G"
 ephemeral-storage: "10G"
 requests:
 cpu: "80"
 memory: "384G"
 ephemeral-storage: "10G"

● CPU is a slightly trickier expression because Kubernetes can schedule
at a sub-core level while HTCondor uses whole cores

$ condor_status slot1@c001 -af Memory
366211

- name: _CONDOR_MEMORY
 valueFrom:
 resourceFieldRef:
 containerName: execute
 resource: requests.memory
 divisor: 1Mi

17

HTCondor - Execute cont'd

● HTCondor pods are preemptable by other Kubernetes deployments
○ This is potentially a pain point! No tools available to enforce HTCondor-like fair

share in K8S.
○ Global default priority class is non preempting, so pods by default will not

preempt other running pods

● CVMFS is available via hostpath mount
● User identity (UNIX name/uid/gid) and shared filesystems ($DATA,

$HOME) available in the containers

18

ServiceX
● A service that quickly filters

and delivers data.
● Filtering here means

skimming, slimming and
augmenting input data. Input
data can be xAODs or flat
ROOT files.

● Resulting data can be
delivered as PyArrow
awkward arrays or flat ROOT
files.

19

ServiceX deployments

● Ideally to be orchestrated to run near datasets to reduce data
transfer volume (FABRIC CERN to investigate server side
filtering)

● 2 Instances are deployed at AF
○ ATLAS xAOD
○ ATLAS uproot

● Endpoints are publicly accessible
● Authentication via Globus Auth. Account approval via a Slack

channel #servicex-signups 20

https://xaod.servicex.af.uchicago.edu/
https://uproot-atlas.servicex.af.uchicago.edu/

Coffea Casa

21

● What is it?

○ A Prototype of an Analysis Facility for Columnar Object Framework For Effective Analysis (Coffea).

○ A bunch of python tools that greatly simplifies columnar data analysis.

○ Specially performant when parallelized using Dask.

○ Build on top of kubernetes and htcondor, users use Jupyter to do analysis.

○ Easily-scalable and user-friendly computational environment that will simplify, facilitate, and accelerate the delivery of HEP results.

● The SSL team works closely with the Coffea Casa team to support Analysis Grand Challenge

○ including direct code contributions, e.g. adding support for deploying HTCondor within Kubernetes

■ Previously required external HTCondor as a dependency

■ This allows easier deployment for sites with no existing HTCondor cluster/or HTCondor expertise.

● Deployment of Coffea Casa instance on SSL and the new ATLAS shared Tier3 / Analysis
Facility

Coffea Casa Deployment

● Deployed via Fluxcd
● Docker images served

from OSG Harbor
● User authentication via

Indico IAM for Atlas
● Coffea-Casa Analysis

Facility @ UChicago can
support ATLAS users via
CERN IdM service
(https://atlas-auth.web.cern.ch/)

22

● Currently run as coffea-atlas user, will work on
customizing the jupyter authenticator and notebook
images to support running notebooks as provisioned user
to give users a more unified experience($HOME $DATA
directory access, fair share etc)

https://hub.opensciencegrid.org/harbor/projects
https://atlas-auth.web.cern.ch/

Resource management

● 3 main types of load: htcondor worker, interactive notebooks,
servicex(transformers)

● most of the resources statically allocated to compute(condor
workers)

● Login nodes are reserved for interactive notebooks
● Servicex transformers are bursty but doesn’t have reserved

resource – scales with HPA
● Configure priorityclass to allow transformers to explore unused

cycles 23

ML Platform

24

● Customizable Jupyterlab
environment with GPU support

● Node feature discovery to label
nodes with their features and
expose features to allow users to
match gpus

● Currently 2 types of GPUs
○ 4 Full A100
○ 28 MIG1g.5gb(equivalent of 1/7

of full gpu)
● the notebook runs as provisioned

user for unified user experience –
with $HOME and $DATA directory
access

Monitoring

● Prometheus operator and Grafana
● Configured for Federated ID login

(CI Logon)
● Many dashboards: ceph cluster,

coffea-casa users, ml users, kube
networking, compute, workload,
gpus …

● Alerts send to slack channel

25

Closing thoughts

● Kubernetes is a portable, extensible, open-source platform for managing
containerized workloads and services, a nice fit for building forward-looking
analysis facility
○ A large and rapidly growing ecosystem
○ The operator pattern helps a lot in managing complex application deployments
○ The declarative nature of kubernetes and gitops tooling and practices offers peace of mind in

managing the complexity

● There are many interesting new analysis frameworks in this space, and users are
excited about notebook-driven analysis.

● Traditional batch is not going away, we need to support both.

26

Questions?

