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https://indico.cern.ch/event/1132360/


Why Analysis Facilities? Why Kubernetes?

● There is a need to provide infrastructure to support highly 
interactive, bursty workloads not covered by grid infrastructure (*)

● A number of interesting new analysis frameworks are being 
developed, many of which have adopted Kubernetes as an enabling 
technology

● Need flexibility to support both traditional batch and interactive 
capabilities for LHC Run 3, and forward-looking technologies for 
HL-LHC R&D

(*) Future Analysis Systems and Facilities, IRIS-HEP blueprint meeting, October 26-27, 2020
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https://iris-hep.org/as.html
https://iris-hep.org/as.html
https://indico.cern.ch/event/960587/


Designed for easy onboarding and use
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Architecture overview
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Hardware Description

● Equipment and design chosen to provide interactive logins, 1000 
analysis cores, 1 PB of user storage and 25Gbps switching infrastructure 
within a fixed budget

● 16 "hyperconverged" nodes to provide both storage and compute 
capacity

○ Dual AMD Epyc 7402, 512 GB RAM, 16TB HDDs and 1TB NVMes for Ceph, 2TB SSDs for 

dedicated scratch space for batch

● 16 “compute only” nodes – dell R750
○ Dual Intel Xenon Gold 6348, 28C/56T, 384 GB, 10x 3.2 TB NVMe, 25GbE

● 2 GPU nodes - Dell XE8545
○ Dual AMD 7543 2.8GHz (32-core/64-thread) CPU, 512GB RAM , 2x 960GB, SSD storage 

(~2T /scratch), Dual Port 10/25GbE SFP28 w/ 10Gbps optics
○ 4x A100 GPU cards

● 6 Interactive nodes for traditional batch logins plus Jupyter notebooks.
○ Dual AMD Epyc 7402, 256 GB RAM
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Zooming in on the Kubernetes pieces
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Kubernetes - basic configurations and extensions

● OIDC authentication
○ cilogon

● Metallb 
○ Currently on layer 2 mode
○ BGP mode can be explored too when needed

● Calico
○ Without network overlay/encapsulation – highest performance and 

simplest network
○ ipv4/ipv6 dual stack configured

● Nginix Ingress controller and certificate cluster issuer with both http01 
and dns01 solver 7



Kubernetes - extensions with operators

● Operators use crds and control loop, aims to capture the key aim 
of a human operator who is managing a service or set of 
services– you declare, I reconcile

● Many operators deployed
○ Fluxcd - gitops operator
○ Rook - storage operator
○ Kube-prometheus-stack - monitoring operator
○ Calico operator – network operator
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Tools for declarative deployment - FluxCD

● Flux CD - "GitOps" style application 
deployment
○ All configuration lives in GitHub, 

installation/updates/removal all happen via 
the Flux operator that uses Git as a single 
source of truth for the cluster.

○ All of the basic Kubernetes extensions are 

loaded into the Flux repo (Ingress, Load 
Balancer, monitoring, certificate management, 
etc)

○ Ceph, HTCondor, etc are also managed by Flux
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Tools for declarative deployments - SLATE
● Federated service orchestration platform for K8S.
● Provides abstraction for users, groups using 

federated ID (CI Logon / Globus) across many K8S 
clusters

● Uses Helm to abstract away complex K8S APIs, 
simplifying to a set of configuration values for each 
app.
○ In SLATE, only trusted developers can build applications, 

while operators can configure them. 

● System administrators can register their cluster with 
SLATE, allow groups and apps to deploy software.

● Operators can store deployments in GitHub and use 
GitOps 10

on AF



A tour of some apps on the Analysis Facility
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Rook

● Kubernetes-flavored Ceph, closely tracks 
upstream releases

● Fully manages Ceph cluster on the AF via 
Kubernetes Operator 

● Very popular storage option in the 
Kubernetes community

● A "graduated" project in the Cloud Native 
Computing Foundation ecosystem. 
○ i.e., multiple organizations committing code, 

completed security audit, explicitly defined project 
governance, etc.
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Rook/Ceph configuration on the UC AF

● Goal: Provide a 1PB shared filesystem ($DATA) for users of the AF
● 228x 16TB HDDs configured for 3x replication

○ EC is tantalizing for the capacity gains, but we haven't had a good experience with it 
elsewhere.

● Each node has a dedicated NVMe for Bluestore database (Metadata).
● Each node has a second dedicated NVMe for CephFS metadata
● CephFS configured with 6 MDSes

○ 3 active, 3 standby - floating on the Hyperconverged nodes.

● Filesystem mountable within Kubernetes and outside.
● Currently we are not using RADOSGW or RBD. 

○ Tight focus on performant cluster filesystem for user data.
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Ceph Dashboard
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HTCondor Setup

● Single, unified queue presented to users
○ Any login node, any notebook sees the same queue

● Fully tokenized authentication
○ Each user has a $HOME/.condor directory that holds a 

token allowing job submission to the remote schedd on a 
shared filesystem

● All execute nodes live in Kubernetes
○ Piecemeal approach to moving daemons into K8S
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HTCondor - Submit

● Goal: Provide O(1000) cores for batch analysis
● HTCondor 9.x with fully tokenized configuration
● Single schedd on dedicated "head" node, users see a single queue.

○ In the future, we will run multiple schedd queues and hash users across queues, if needed.

● Currently two of the "interactive" nodes are used as traditional 
HTCondor submit points

● Every user has a submit token in ~/.condor/tokens.d to facilitate 
'remote' submission

● Shared filesystem between submit points and schedd, so users don't 
need to transfer files to the schedd.
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HTCondor - Execute

● Completely managed by Kubernetes with a lot of nice features
● 80 logical cores per Worker, partitionable slots
● HTCondor pods are dynamically configured based on values from the 

Kubernetes downward API, e.g.
resources:
  limits:
    cpu: "84"
    memory: "400G"
    ephemeral-storage: "10G"
  requests:
    cpu: "80"
    memory: "384G"
    ephemeral-storage: "10G"

● CPU is a slightly trickier expression because Kubernetes can schedule 
at a sub-core level while HTCondor uses whole cores

$ condor_status slot1@c001 -af Memory
366211

- name: _CONDOR_MEMORY
  valueFrom:
  resourceFieldRef:
    containerName: execute
     resource: requests.memory
     divisor: 1Mi
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HTCondor - Execute cont'd

● HTCondor pods are preemptable by other Kubernetes deployments
○ This is potentially a pain point! No tools available to enforce HTCondor-like fair 

share in K8S.
○ Global default priority class is non preempting, so pods by default will not 

preempt other running pods

● CVMFS is available via hostpath mount
● User identity (UNIX name/uid/gid) and shared filesystems ($DATA, 

$HOME) available in the containers
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ServiceX
● A service that quickly filters 

and delivers data.
● Filtering here means 

skimming, slimming and 
augmenting input data. Input 
data can be xAODs or flat 
ROOT files.  

● Resulting data can be 
delivered as PyArrow 
awkward arrays or flat ROOT 
files. 
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ServiceX deployments

● Ideally to be orchestrated to run near datasets to reduce data 
transfer volume (FABRIC CERN to investigate server side 
filtering)

● 2 Instances are deployed at AF
○ ATLAS xAOD
○ ATLAS uproot

● Endpoints are publicly accessible
● Authentication via Globus Auth. Account approval via a Slack 

channel  #servicex-signups 20

https://xaod.servicex.af.uchicago.edu/
https://uproot-atlas.servicex.af.uchicago.edu/


Coffea Casa
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● What is it?

○ A Prototype of an Analysis Facility for Columnar Object Framework For Effective Analysis (Coffea). 

○ A bunch of python tools that greatly simplifies columnar data analysis.

○ Specially performant when parallelized using Dask.

○ Build on top of kubernetes and htcondor, users use Jupyter to do analysis.

○ Easily-scalable and user-friendly computational environment that will simplify, facilitate, and accelerate the delivery of HEP results.

● The SSL team works closely with the Coffea Casa team to support Analysis Grand Challenge

○ including direct code contributions, e.g. adding support for deploying HTCondor within Kubernetes

■ Previously required external HTCondor as a dependency

■ This allows easier deployment for sites with no existing HTCondor cluster/or HTCondor expertise. 

● Deployment of Coffea Casa instance on SSL and the new ATLAS shared Tier3 / Analysis 
Facility 



Coffea Casa Deployment

● Deployed via Fluxcd
● Docker images served 

from OSG Harbor 
● User authentication via 

Indico IAM for Atlas
● Coffea-Casa Analysis 

Facility @ UChicago can 
support ATLAS users via 
CERN IdM service
( https://atlas-auth.web.cern.ch/)
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● Currently run as coffea-atlas user, will work on 
customizing the jupyter authenticator and notebook 
images to support running notebooks as provisioned user 
to give users a more unified experience($HOME $DATA 
directory access, fair share etc)

https://hub.opensciencegrid.org/harbor/projects
https://atlas-auth.web.cern.ch/


Resource management

● 3 main types of load: htcondor worker, interactive notebooks, 
servicex(transformers)

● most of the resources statically allocated to compute(condor 
workers)

● Login nodes are reserved for interactive notebooks
● Servicex transformers are bursty but doesn’t have reserved 

resource – scales with HPA
● Configure priorityclass to allow transformers to explore unused 

cycles 23



ML Platform
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● Customizable Jupyterlab 
environment with GPU support

● Node feature discovery to label 
nodes with their features and 
expose features to allow users to 
match gpus

● Currently 2 types of GPUs
○ 4 Full A100
○ 28 MIG1g.5gb(equivalent of 1/7 

of full gpu)
● the notebook runs as provisioned 

user for unified user experience – 
with $HOME and $DATA directory 
access



Monitoring

● Prometheus operator and Grafana 
● Configured for Federated ID login 

(CI Logon)
● Many dashboards: ceph cluster, 

coffea-casa users, ml users, kube 
networking, compute, workload, 
gpus …

● Alerts send to slack channel
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Closing thoughts

● Kubernetes is a portable, extensible, open-source platform for managing 
containerized workloads and services, a nice fit for building forward-looking 
analysis facility
○ A large and rapidly growing ecosystem
○ The operator pattern helps a lot in managing complex application deployments
○ The declarative nature of kubernetes and gitops tooling and practices offers peace of mind in 

managing the complexity

● There are many interesting new analysis frameworks in this space, and users are 
excited about notebook-driven analysis.

● Traditional batch is not going away, we need to support both.
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Questions?


