
USCMS Analysis 
Facilities

Lindsey Gray
25 March 2022 

HSF AF Forum Kick-off Meeting



Lindsey Gray, FNAL

Outline

๏Modern analysis tools - focusing on columnar tools

• Analysis facilities then and now

• Separating resource and compute scheduling

๏Ongoing efforts within the US

2



Lindsey Gray, FNAL

New Facilities for New Tools

๏Generally: AFs provide a curated substrate upon which to easily deploy these (stacks of) tools at scale

• The exact way in which this service is provided is currently filled with opinion, but there is a large degree of 
convergent evolution

• We’ll enumerate all the efforts and the directions under study at present

• Each effort, while similar, does have different foci

๏While not in the box above - RDataFrame is within the scope of all AFs discussed in this talk
3



Lindsey Gray, FNAL

Impedance Mismatches

4

• ROOT File <-> Machine Learning (uproot is everywhere nowadays)

• Big data <-> PyROOT (python for-loops are slow)

• HEP Physicist <-> Industry (we are a subset of wider data science)



Lindsey Gray, FNAL

Scientific Python

5



Lindsey Gray, FNAL

What’s Coffea?

6

• A package in the scientific python ecosystem
- $ pip install coffea  

• A user interface for columnar analysis 
- With missing pieces of the stack filled in

• A minimum viable product
- We are data analyzers too #dogfooding

• A really strong glue  

• Going strong for four years 

• Roughly as fast as compiled code
• Significantly more reusable



Lindsey Gray, FNAL

What is columnar analysis?

7

• Event loop analysis:
- Load relevant values for a specific event into local variables
- Evaluate several expressions
- Store derived values
- Repeat (explicit outer loop)

• Columnar analysis:
- Load relevant values for many events into contiguous arrays
- Evaluate several array programming expressions

• Implicit inner loops
- Store derived values

12

From K. Pedro

12

From K. Pedro



Lindsey Gray, FNAL

Scaling Out

8

• User is provided data frame of columns 
they wish to process

• User fills a defined set of accumulators
- Histograms, dictionaries of counts, appendable 

arrays, …
• Coffea executor takes care of the rest

- Local machine, dask, spark, parsl (and condor)

coffea.prcoffea.prcoffea.prcoffea processor

map reduceROOT files
Parquet files
…

Histograms
Event lists
…

coffea executor

from coffea import hist, processor

class MyProcessor(processor.ProcessorABC):
    def __init__(self, flag=False):
        self._flag = flag
        self._accumulator = processor.dict_accumulator({
            # Define histograms
        })

    @property
    def accumulator(self):
        return self._accumulator

    def process(self, df):
        output = self.accumulator.identity()

        # PHYSICS GOES HERE

        return output

    def postprocess(self, accumulator):
        return accumulator

p = MyProcessor()



Lindsey Gray, FNAL

Analysis Facilities Then and Now

๏Physicists can handle an enormous amount of workflow 
complexity to achieve their goals

• What’s “easy” is incredibly subjective
- person to person and analysis to analysis

๏CMS Analysis facilities circa 2005-2019 have largely been 
login terminals with batch access

• Just having that was sufficient to be a facility

• CMS has published > 1000 papers working this way

9



Lindsey Gray, FNAL

Analysis Facilities Then and Now

๏However, it can be easier and less hectic for data analysts

• Technologies like Dask, Apache Spark, Parsl, and Work Queue 
encapsulate and abstract physics analysis workflows

• With this abstraction, administrators are able to determine 
more optimal resource deployment/usage patterns with a 
“weaker” binding directly to user code

• Physicists can focus on physics while also efficiently using 
clusters

๏I co-lead the “Analysis Tools Task Force” on CMS which will 
make recommendations on the usage of these technologies 
(n.b. not the facilities themselves) for Run 3 & beyond

10

https://dask.org/
https://spark.apache.org/
https://github.com/Parsl/parsl
http://ccl.cse.nd.edu/software/workqueue


Lindsey Gray, FNAL

Separating Resources From Computation

๏The main benefit of tools like Dask is to factorize the accumulation of 
resources from the execution of a computing workload

• If your tasks are short (t_task << t_analysis) this factorization removes a 
significant amount of wall-clock overhead simply from scheduling jobs and starting 
a worker

• Additionally, since you know you have a given amount of compute for the entire 
duration of the analysis you can consider using distributed memory to store 
results

11

Task-graph distributed across acquired executors

Dask scheduler 
orchestrates execution 

of task graph

Condor scheduler 
acquires executors

Dask scheduler and nodes talk to 
each other to distribute tasks.



Lindsey Gray, FNAL

Coffea Casa @ UNL

๏JupyterHub + kubernetes deployment with spillover to HTCondor for large workloads

• Supports 3-4 active analyses, have successfully burst to 20 concurrent users

• Major interest in developing a sharable infrastructure as software, exploiting cloud-native 
deployment patterns

12



Lindsey Gray, FNAL

Coffea Casa @ UNL

13

CMSAF @T2 Nebraska
“Coffea-casa”

https://coffea.casa

OpenData AF @T2 Nebraska
“Coffea-casa”

https://coffea-opendata.casa

ATLAS AF @Scalable  
System Lab (UChicago)

“Coffea-casa”

https://coffea.casa/
https://coffea-opendata.casa/


Lindsey Gray, FNAL

AF @ MIT - Infrastructure

๏Computing for login

• Order of ten beefy machines including, large memory, O(500) CPU cores 
and O(10) big GPUs (NVidia T100/T4) 

๏Network

• 100 Gb/s for all machines, RDMA enabled 

๏Storage

• Tiered Storage:
- Tape storage from MIT Tape Pilot project (being commissioned)

- Spinning disks: T2 (10 PB) at 100 Gb/s, T3 (300 TB) at 2x10 Gb/s

- NVMe sticks: Local (50 TB) at 2x100 Gb (waiting for delivery)

• XCache is planned

๏Behind the scenes

• HTCondor: Tier-2, Tier-3, global pool, OSG

• Slurm: local HPC resources (old lattice QCD cluster)
14



Lindsey Gray, FNAL

AF @ MIT - Initial Setup

๏Login

• Key based with MIT account (sponsored guest accounts?)

• CMS data access authentication x509 for now

๏Work environment

• Load balanced JupyterHub access, Coffea type of analysis

• Dask sitting on top of MIT Tier-3/Tier-2 centers

• HTCondor and Slurm as batch managers

๏Data access optimization

• Tiered storage seems an obvious candidate for ‘sophisticated’ 
optimization of storage… work in progress:
- 50 TB of NVMe should function as a hot cache for most accessed data

- Tape is ideal candidate for rarely used data or just as safety net to recover 
from disaster

15



Lindsey Gray, FNAL

AF @ Purdue Status and Plans

๏The Purdue CMS T2 provides interactive AF capabilities for distributed physics data analysis since 2020, 
utilizing both interactive SSH sessions and JupyterHub to scale DASK/Spark clusters on HPC systems to 
over 1000 cores in parallel. 

• In that configuration the AF at Purdue was used in a CMS publication 
- DOI: 10.1007/JHEP01(2021)148) and in multiple ongoing analyses 

• MuonHLT upgrades, H→μμ Snowmass, Z’→ll, Top quark spin correlation 

๏In 2021 Purdue received USCMS funding for dedicated AF hardware, and our design evolved to include new 
AF capabilities based on CERN’s ScienceBox (EOS, CERNBox, SWAN) running in Kubernetes, and leverage 
the new Geddes Composable Platform, a Kubernetes-based “Community Cloud” resource at Purdue. 

• Provides user-defined virtual clusters via DASK and Spark, for massively parallel user analyses based on coffea 
framework. 

• Integrates with Purdue’s Kubernetes-based private cloud ‘Geddes’, and Purdue’s Community Clusters. 

• Investigating OSG and public cloud integration in the future. 

๏Geddes Composable Platform 

• Purdue Research Computing has just built the Geddes Composable Platform - a private cloud resource based on 
Rancher and Kubernetes. This “Community Cloud” resource is a platform for flexible, scalable and reproducible 
scientific data analysis. 

• In June 2021, Purdue received NSF funding to build out a private campus cloud focused on data analytics and 
machine learning.  Synergies with AF effort funded by USCMS

๏The new hardware has already been received, and the upgrade will take place over the course of 2022 in 
close collaboration with USCMS Operations Program. 

16



Lindsey Gray, FNAL

AF @ Purdue Conceptual Layout

17



Lindsey Gray, FNAL

Elastic Analysis Facility @ FNAL

18

From Burt’s slides at OSG AHM: https://indico.fnal.gov/event/22127/contributions/194934/attachments/133990/165498/Elastic_AF_-_OSG_USLHC.pdf

Secure

•LDAP and VPN login, 
Kerberos. Docker 
image audits, and 
mitigation strategies 
put in place for data 
preservation and least 
privilege guarantee.

Integrated

•Ferry, Htcondor, dask-
gateway, spark, triton

Multi-vo

•user management, 
centralized 
authorization, 
specialized 
environments, large-
ish cvmfs 
infrastructure in place 
via NFS auto-scalable 
pods

DevOps:

•CI/CD pipelines for all 
environments, CPU 
and GPU flavors

Other horizons:

•Now supporting 
Fermilab’s Accelerator 
division Edge AI. 
Hoping to foster effort 
from SCD and AD on 
designing analysis 
facilities beyond SCD  

•Collaborating with the 
Dask team on 
developing a plugin to 
integrate Dask 
Gateway with 
HTCondor, coming 
soon



Lindsey Gray, FNAL

Elastic AF: A Multi-Experiment AF

๏Started as a USCMS project but has grown to be a multi-experiment project providing all services to 
multiple FNAL experiments.

• EAF heard from and are actively collaborating with YorkU/Compute Canada for a prototype EAF for DUNE. 

• EAF developed more than 15 environments for experiments with dedicated CVMFS mounts, shared storage 
and specific scientific software, all in compliance with DOE cybersecurity requirements

• EAF started collaborating with Fermilab’s Accelerator Divison and designed an environment for the READS 
project Accelerator Real-time Edge AI for Distributed Systems (READS)

๏BDT/ML analysis on local and remote GPUs via the EAF Triton Server GPU pod

19



Lindsey Gray, FNAL

Conclusions and Outlook

๏New tools like RDataFrames and Awkward Arrays make data analysis using the 
python ecosystem feasible and fast

• Compiled-code speeds with the flexibility and expressivity of python

• Notebook integration with these fast tools means we can approach data exploration 
in significantly more interactive ways

๏Four AF efforts within USCMS heavily focused on deploying modern workflows

• Providing the usual terminal access as well as notebooks predominantly through 
JupyterHub

• Coffea-casa, ElasticAF well-advanced on interface & access

๏Each effort focusing on different aspects of eventual common goal

• Healthy (and natural!) split between software infrastructure, hardware infrastructure, 
and multi-tenancy

๏Expect scale-up, benchmarking, (more) publications using these facilities over 
the course of 2022

• Exciting times ahead, and best-practices will emerge!

20



Lindsey Gray, FNAL

Extras

21



Lindsey Gray, FNAL

Concrete Example

22

Event loop

void MyClass::Loop() {
  size_t nEvents;
  // load...

  for (Long64_t iEvent=0; iEvent<nEvents; iEvent++) {
    double MET_pt;
    int nElectron;
    double * Electron_pt;
    double * Electron_eta;
    // load...

    if ( MET_pt > 100. ) continue;

    for(size_t iEl=0; iEl<nElectron; ++iEl) {
      if ( Electron_pt[iEl] > 30. ) {
        hist->Fill(Electron_eta[iEl]);
      }
    }
  }
}



Lindsey Gray, FNAL

Concrete Example

23

Columnar

void MyClass::Loop() {
  size_t nEvents;
  double * MET_pt;
  int * nElectron;
  size_t nElectron_flat;
  double * Electron_pt;
  double * Electron_eta;
  // load...

  bool * eventmask = allocate(nEvents);
  for (size_t i=0; i<nEvents; i++)
    eventmask[i] = MET_pt[i] > 100.;

  bool * entrymask = allocate(nElectron_flat);
  for (size_t i=0; i<nElectron_flat; ++i)
    entrymask[i] = Electron_pt[i] > 30.;

  bool * entrymask2 = allocate(nElectron_flat);
  size_t * parents = get_parents(nEvents, nElectron);
  for (size_t i=0; i<nElectron_flat; ++i)
    entrymask2[i] = eventmask[parents[i]] & entrymask[i];

  double * take_result = allocate(nElectron_flat);
  size_t idx = 0;
  for (size_t i=0; i<nElectron_flat; ++i)
    if ( entrymask2[i] )
      take_result[idx++] = Electron_eta[i];

  for (size_t i=0; i<idx; i++)
    hist->Fill(take_result[i]);
}

Event loop

void MyClass::Loop() {
  size_t nEvents;
  // load...

  for (Long64_t iEvent=0; iEvent<nEvents; iEvent++) {
    double MET_pt;
    int nElectron;
    double * Electron_pt;
    double * Electron_eta;
    // load...

    if ( MET_pt > 100. ) continue;

    for(size_t iEl=0; iEl<nElectron; ++iEl) {
      if ( Electron_pt[iEl] > 30. ) {
        hist->Fill(Electron_eta[iEl]);
      }
    }
  }
}



Lindsey Gray, FNAL

Concrete Example

24

Columnar

cut = (events.MET.pt < 100.) & (events.Electron.pt > 30.)
hist.fill(eta=events.Electron.eta[cut].flatten())

Event loop

void MyClass::Loop() {
  size_t nEvents;
  // load...

  for (Long64_t iEvent=0; iEvent<nEvents; iEvent++) {
    double MET_pt;
    int nElectron;
    double * Electron_pt;
    double * Electron_eta;
    // load...

    if ( MET_pt > 100. ) continue;

    for(size_t iEl=0; iEl<nElectron; ++iEl) {
      if ( Electron_pt[iEl] > 30. ) {
        hist->Fill(Electron_eta[iEl]);
      }
    }
  }
}



Lindsey Gray, FNAL

Example of 
Physics 
Code

25

class Q8Processor(processor.ProcessorABC):
    """For events with at least three light leptons and a same-flavor
    opposite-charge light lepton pair, find such a pair that has the
    invariant mass closest to 91.2 GeV in each event and plot the transverse
    mass of the system consisting of the missing transverse momentum and
    the highest-p_T light lepton not in this pair.
    """

    def process(self, events):
        events["Electron", "pdgId"] = -11 * events.Electron.charge
        events["Muon", "pdgId"] = -13 * events.Muon.charge
        events["leptons"] = ak.concatenate([events.Electron, events.Muon], axis=1,)
        events = events[ak.num(events.leptons) >= 3]

        pair = ak.argcombinations(events.leptons, 2, fields=["l1", "l2"])
        pair = pair[(events.leptons[pair.l1].pdgId == -events.leptons[pair.l2].pdgId)]
        with np.errstate(invalid="ignore"):
            pair = pair[
                ak.singletons(
                    ak.argmin(
                        abs(
                            (events.leptons[pair.l1] + events.leptons[pair.l2]).mass
                            - 91.2
                        ),
                        axis=1,
                    )
                )
            ]
        events = events[ak.num(pair) > 0]
        pair = pair[ak.num(pair) > 0][:, 0]

        l3 = ak.local_index(events.leptons)
        l3 = l3[(l3 != pair.l1) & (l3 != pair.l2)]
        l3 = l3[ak.argmax(events.leptons[l3].pt, axis=1, keepdims=True)]
        l3 = events.leptons[l3][:, 0]

        mt = np.sqrt(2 * l3.pt * events.MET.pt * (1 - np.cos(events.MET.delta_phi(l3))))
        return (
            hist.Hist.new.Reg(
                100, 0, 200, name="mt", label=r"$\ell$-MET transverse mass [GeV]"
            )
            .Double()
            .fill(mt)
        )

    def postprocess(self, accumulator):
        return accumulator



01/03/2022 Lindsey Gray | AFs @ KIT

Coffea documentation and support

• Extensive documentation of code base in multiple forms
- Basic documentation website
- Jupyter Notebooks
- YouTube videos

• Significant use by other projects, large contributor base
- Intend to keep this project going for a long time
- 79 direct forks of the coffea repository
- Standard open-source core + community supported model

26



01/03/2022 Lindsey Gray | AFs @ KIT

Writing Physics Analysis Code in Coffea (I)

27

import awkward as ak
import hist
import matplotlib.pyplot as plt
from coffea import nanoevents, processor

processor.NanoAODSchema.warn_missing_crossrefs = False

class Q3Processor(processor.ProcessorABC):
    """Plot the p_T of jets with |η| < 1."""

    def process(self, events):
        return (
            hist.Hist.new.Reg(100, 0, 200, name="ptj", label="Jet $p_{T}$ [GeV]")
            .Double()
            .fill(ak.flatten(events.Jet[abs(events.Jet.eta) < 1].pt))
        )

    def postprocess(self, accumulator):
        return accumulator

if __name__ == "__main__":
    runner = processor.Runner(
        executor=processor.FuturesExecutor(workers=4),
        schema=nanoevents.NanoAODSchema,
        chunksize=2 ** 19,
    )

    output = runner(
        fileset={"SingleMu": ["Run2012B_SingleMu.root"]},
        treename="Events",
        processor_instance=Q3Processor(),
    )
    output.plot()
    plt.gcf().savefig("pt.pdf")



01/03/2022 Lindsey Gray | AFs @ KIT

Physics Code (II)

28

class Q8Processor(processor.ProcessorABC):
    """For events with at least three light leptons and a same-flavor
    opposite-charge light lepton pair, find such a pair that has the
    invariant mass closest to 91.2 GeV in each event and plot the transverse
    mass of the system consisting of the missing transverse momentum and
    the highest-p_T light lepton not in this pair.
    """

    def process(self, events):
        events["Electron", "pdgId"] = -11 * events.Electron.charge
        events["Muon", "pdgId"] = -13 * events.Muon.charge
        events["leptons"] = ak.concatenate([events.Electron, events.Muon], axis=1,)
        events = events[ak.num(events.leptons) >= 3]

        pair = ak.argcombinations(events.leptons, 2, fields=["l1", "l2"])
        pair = pair[(events.leptons[pair.l1].pdgId == -events.leptons[pair.l2].pdgId)]
        with np.errstate(invalid="ignore"):
            pair = pair[
                ak.singletons(
                    ak.argmin(
                        abs(
                            (events.leptons[pair.l1] + events.leptons[pair.l2]).mass
                            - 91.2
                        ),
                        axis=1,
                    )
                )
            ]
        events = events[ak.num(pair) > 0]
        pair = pair[ak.num(pair) > 0][:, 0]

        l3 = ak.local_index(events.leptons)
        l3 = l3[(l3 != pair.l1) & (l3 != pair.l2)]
        l3 = l3[ak.argmax(events.leptons[l3].pt, axis=1, keepdims=True)]
        l3 = events.leptons[l3][:, 0]

        mt = np.sqrt(2 * l3.pt * events.MET.pt * (1 - np.cos(events.MET.delta_phi(l3))))
        return (
            hist.Hist.new.Reg(
                100, 0, 200, name="mt", label=r"$\ell$-MET transverse mass [GeV]"
            )
            .Double()
            .fill(mt)
        )

    def postprocess(self, accumulator):
        return accumulator



01/03/2022 Lindsey Gray | AFs @ KIT

Coffea Corrections

• Via awkward arrays coffea can process most if not all tabular/columnar data
- Can ingest parquet, root by default and extensible to any reasonable file format

• Often we want to apply corrections to our data or make variations to estimate 
the effect of systematics
- Coffea has tools that make bookkeeping easy for this task for all corrections used by CMS
- We’ve done our best to make sure these tools are well validated and usable in analysis
- Coffee supports correctionlib out of the box in latest versions

29

from coffea.btag_tools import BTagScaleFactor 

btag_sf = BTagScaleFactor("data/DeepCSV_102XSF_V1.btag.csv.gz", "medium") 

print("SF:", btag_sf.eval("central", events.Jet.hadronFlavour, abs(events.Jet.eta), events.Jet.pt)) 
print("systematic +:", btag_sf.eval("up", events.Jet.hadronFlavour, abs(events.Jet.eta), events.Jet.pt))

rochester_data = coffea.lookup_tools.txt_converters.convert_rochester_file( 
    "tests/samples/RoccoR2018.txt.gz", loaduncs=True 
) 
rochester = coffea.lookup_tools.rochester_lookup.rochester_lookup(rochester_data) 
data_k = rochester.kScaleDT( 
    events.Muon.charge, events.Muon.pt, events.Muon.eta, events.Muon.phi 
)



01/03/2022 Lindsey Gray | AFs @ KIT

Coffea + ML

• All ML toolkits natively use flat columnar data
- Awkward arrays are compatible with all ML tools by default, and has auto-diff
- No show-stoppers for interface compatibility or using any ML framework in analysis

• Analyses on CMS and ATLAS are using the following ML tools with coffea
- xgboost, TFLite, nVidia Triton

• The list of available frameworks is mostly driven by package size (all of these are ~ 20MB each)
• There is no “light” installation of PyTorch, and nearly every ML framework is covered by Triton
• Preserving BDT-based analysis workflows, upgrading from TMVA to xgboost is seamless thanks 

to tmva-to-xgboost (already demonstrated to give same answers within rounding error)

30

import torch 
import awkward as ak 
 
model = torch.load(‘/some/model.pt') 
x = ak.Array([[1., 2., 3.], [4., 5.], [6.]]) 
# find the x with largest probability in a given event, assuming ‘model’ is trained to do that 
probs = ak.softmax(ak.unflatten(model(torch.tensor(ak.flatten(x))).numpy(), ak.num(x)), axis=1)

counts = awkward.num(diphotons, axis=-1) 
bdt_inputs = numpy.column_stack( 
    [awkward.to_numpy(awkward.flatten(bdt_vars[name])) for name in var_order] 
) 
tempmatrix = xgboost.DMatrix(bdt_inputs, feature_names=var_order) 
scores = diphoton_mva.predict(tempmatrix) 
diphotons["bdt_score"] = awkward.unflatten(scores, counts)

http://www.apple.com
http://model.pt


01/03/2022 Lindsey Gray | AFs @ KIT

Coffea + Combine

• There is no well defined api for combine so the primary way to interact with it 
is by feeding it ROOT files full of histograms and preparing workspaces

• The uproot package now allows for writing histograms and TTrees to disk in 
the root file format
- For histograms must project down to 3 dimensions or fewer

• Logic for creating models and workspaces can still be achieved via RooFit + 
PyRoot
- If using tfcombine, SmooFit, jaxfit prototypes then alternative ways of building a fitting 

model are available

31



25/02/2022 Lindsey Gray | Coffea @ ATTF32

Code example walkthrough: 
      CMS DAS TTGamma Long Exercise

Distributed computation on condor demo (LPC specific): 
      lpcjobqueue/simple_example.py
      (lxplus demo available on demand)

https://github.com/nsmith-/TTGamma_LongExercise/blob/FullAnalysis/ttgamma/processor.py
https://github.com/CoffeaTeam/lpcjobqueue/blob/main/simple_example.py

