Higgs Boson properties and couplings Snowmass EF01 report Caterina Vernieri, Sally Dawson

April 20, 2022 **ECFA WG1 Workshop**

Higgs and the exploration of the EF

- The Standard Model is not a complete theory •
 - Gravity, neutrino mass, dark matter ...
- The Higgs boson is a **potential window to probe** • physics Beyond the Standard Model
 - Searches for additional scalars
 - (Interplay with) Precision measurements of the • **Higgs boson properties**
 - Higgs Global fits •

Higgs physics at the HL-LHC

Particle mass [GeV]

Caterina Vernieri

ECFA WG1 · April 20, 2022

ATLAS+CMS HL-LHC 2022 study

The High Luminosity era of LHC will dramatically expand the physics reach for Higgs physics:

- 2-5% precision for most of Higgs couplings
- Larger uncertainties on Z_y and charm
- <50% on the self-coupling
- **Higgs width 5%**

Higgs physics at the HL-LHC

Particle mass [GeV]

Caterina Vernieri

ATLAS+CMS HL-LHC 2022 study

The High Luminosity era of LHC will dramatically expand the physics reach for Higgs physics:

- 2-5% precision for most of Higgs couplings
- Larger uncertainties on Zy and charm
- <50% on the self-coupling
- Higgs width 5%

To be updated: based on the new studies for Snowmass

Caterina Vernieri

Caterina Vernieri

Why leptons?

- Initial state well defined (& polarization) \implies High-precision measurements •
- ullet

Higgs bosons appear in 1 in 100 events \Rightarrow Clean experimental environment and trigger-less readout

Higgs at e+e-

Caterina Vernieri

- ZH is dominant at **250 GeV**
- Above 500 GeV
 - Hvv dominates
 - ttH opens up
 - HH production accessible with ZHH

Which collider?

LEPTON COLLIDERS

- Circular e+e- (CEPC, FCC-ee)
 - 90-350 GeV
 - strongly limited by synchrotron radiation above 350–400 GeV
- Linear $e+e-(ILC, CLIC, C^3)$
 - 250 GeV > 1 TeV
 - Reach higher energies, and can use polarized beams
- µ+µ-
 - 3-30 TeV

HADRON COLLIDERS

• **75-200 TeV** (FCC-hh)

- What do we want to learn on top of what HL-LHC will deliver? •
- - As we gain knowledge, how do we prioritize the Higgs measurements?
 - Which energy to target ?
 - require > 500 GeV
 - LC approach is to start at 250 GeV and then ~500 GeV is it enough?
 - Which measurement are to be prioritized after the 250 GeV run?
 - How relevant is to have polarized beams?

Exploring the complementarity between e^+e^- and LHC will lead to the most precise measurements Timelines matter - ideally the next machine will minimize the gap with HL-LHC, also:

• top-Yukawa, HH, extended Higgs sector with more generic Yukawa coupling scenarios will

Snowmass EF01/2 report

EF012-whitereport

Sally Dawson Adrey Korytov Patrick Meade Isobel Ojalvo Caterina Vernieri

March 2022

Introduction

Why Higgs is great $\mathbf{2}$

DRAF"I'!

- Centrality of Higgs in SM 2.1
- Questions the Higgs leaves us $\mathbf{2.2}$
- Status report of what we know for sure and what's $\mathbf{2.3}$ missing experimentally (self couplings, light yukawas, "unitarization")
- 2.4 New types of measurements vs increased precision (e.g. differential)
- What BSM Higgs physics can influence $\mathbf{2.5}$

Models of BSM Higgs $\mathbf{2.6}$

Models addressing physics questions vs exploring Higgs like possibilities/property modifications

- EFT
- Higgs portal
- Singlet
- Doublet
- Higgs importance in larger frameworks?
- Naturalness, Compositeness

Caterina Vernieri

SLAC

- Mass, width, spin measurements 3
- Update on theory calculations of Higgs rates $\mathbf{4}$
- **Impact of differential measurements** 5
- Higgs coupling measurements with emphasis 6 on light Yukawas
- **CP** violating Higgs coupling measurements
- Update on prospects for observing HH 8
- Update on new analysis techniques for Higgs 9 physics and what they mean
- How coupling measurements and HH impact 10understanding of EFTs
- Why go beyond the SM? 11
- The big motivations for BSM Higgs 12
- Some models showing complementarity of di-13rect searches and precision measurements: Singlet, 2HDM, ?
- Targets for precision based on models $\mathbf{14}$
- Detector/accelerator requirements to observe 15new physics

Expanding 1:

^{- -} How do we go further, energy, luminosity, clean environment (snowmass options, connect to AF, IF)

Higgs couplings at future colliders

- Future colliders under consideration will improve with respect to the HL-LHC the understanding of the Higgs boson couplings - 1-5%
 - Coupling to charm quark could be measured with an accuracy of ~1% in future e+emachines
 - Couplings to $\mu/\gamma/Z\gamma$ benefit the most from the large dataset available at HL-LHC
 - At low energy top-Higgs coupling is not accessible at future lepton colliders

arXiv:1910.11775, arXiv:1905.03764

Higgs couplings at future colliders

- Future colliders under consideration will improve with respect to the HL-LHC the understanding of the Higgs boson couplings - 1-5%
 - **Coupling to charm** quark could be measured with an accuracy of ~1% in future e+emachines
 - **Couplings to \mu/\gamma/Z\gamma** benefit the most from the large dataset available at HL-LHC
 - At low energy top-Higgs coupling is not accessible at future lepton colliders

To be updated: new studies for Snowmass

arXiv:1910.11775, arXiv:1905.03764

ECFA WG1 · April 20, 2022

New from HL-LHC

YR projections based on analyses of partial Run 2 dataset Full Run 2 measurements have drastically improved previous results We need to update our HL-LHC projections

Uncertainty (%)

Updated Higgs couplings for ILC

	II	LC250	ILC500		IL	LC100	
coupling	full	no BSM	full	no BSM	full	no	
hZZ	0.49	0.38	0.35	0.20	0.34	0	
hWW	0.48	0.38	0.35	0.20	0.34	0	
hbb	0.99	0.80	0.58	0.43	0.47	0	
h au au	1.1	0.95	0.75	0.63	0.63	0	
hgg	1.6	1.6	0.96	0.91	0.67	0	
hcc	1.8	1.7	1.2	1.1	0.79	0	
$h\gamma\gamma$	1.1	1.0	1.0	0.96	0.94	0	
$h\gamma Z$	8.9	8.9	6.5	6.5	6.4	6	
$h\mu\mu$	4.0	4.0	3.8	3.7	3.4	3	
htt			6.3	6.3	1.0	1	
hhh			20	20	10		
Γ_{tot}	2.3	1.3	1.6	0.70	1.4	0	
Γ_{inv}	0.36		0.32		0.32		

Note C³ would run at 550 GeV, a factor 2 *improvement to the top-Yukawa coupling (*)*

ECFA WG1 · April 20, 2022

Updated Higgs couplings for ILC

	II	LC250	ILC500		IL	C10
coupling	full	no BSM	full	no BSM	full	no
hZZ	0.49	0.38	0.35	0.20	0.34	0
hWW	0.48	0.38	0.35	0.20	0.34	0
hbb	0.99	0.80	0.58	0.43	0.47	0
h au au	1.1	0.95	0.75	0.63	0.63	0
hgg	1.6	1.6	0.96	0.91	0.67	0
hcc	1.8	1.7	1.2	1.1	0.79	0
$h\gamma\gamma$	1.1	1.0	1.0	0.96	0.94	0
$h\gamma Z$	8.9	8.9	6.5	6.5	6.4	(
$h\mu\mu$	4.0	4.0	3.8	3.7	3.4	3
htt			6.3	6.3	1.0]
hhh			20	20	10	
Γ_{tot}	2.3	1.3	1.6	0.70	1.4	0
Γ_{inv}	0.36		0.32		0.32	

Note C³ would run at 550 GeV, a factor 2 *improvement to the top-Yukawa coupling (*)*

Combined limit of Ks < 6.74 at 95% CL with 900/fb at 250 GeV

Caterina Vernieri

ECFA WG1 · April 20, 2022

One note on polarization

- There are extensive comparisons between the FCC plan and the C³/ILC runs that show they are rather compatible to study the Higgs Boson
- When analyzing Higgs couplings with SMEFT, 2 ak polarized running is essentially equivalent to 5 abunpolarized running.
 - Electron polarization is essential for this
 - There is almost no difference in the expectation and without **positron polarization**.
 - more cross-checks of systematic errors.
 - relevant at high energy (> TeV) where the me • important cross sections are initiated from e

arXiv:1708.08912 arXiv:1801.02840 SLAC (

		2/ab-250	+4/ab-500	5/ab-250	+ 1.5/ab
C-ee	coupling	pol.	pol.	unpol.	unpo
	HZZ	0.50	0.35	0.41	0.34
	HWW	0.50	0.35	0.42	0.35
b-1 of	Hbb	0.99	0.59	0.72	0.62
	H au au	1.1	0.75	0.81	0.71
-1 OT	Hgg	1.6	0.96	1.1	0.96
	Hcc	1.8	1.2	1.2	1.1
	$H\gamma\gamma$	1.1	1.0	1.0	1.0
• • • • • • • • • •	$H\gamma Z$	9.1	6.6	9.5	8.1
n with	$H\mu\mu$	4.0	3.8	3.8	3.7
	Htt	-	6.3	-	-
	HHH	-	27	-	-
ost	Γ_{tot}	2.3	1.6	1.6	1.4
	Γ_{inv}	0.36	0.32	0.34	0.30
$e^{-1}e^{+1}R$	Γ_{other}	1.6	1.2	1.1	0.94

Higgs couplings at the muon collider

Caterina Vernieri

arXiv:2203.07261

ECFA WG1 · April 20, 2022

Higgs-electron Yukawa

- **<u>Electron</u>** Yukawa at FCC-ee with a dedicated 4 years run at the Higgs mass
 - **κ**_e < 1.6 at 95% CL

EF Workshop Restart - September 3, 2021

CP properties

- Goal is to sharpen theoretical expectations / models (see summary from <u>Andrei Gritsan</u>)
 - · Connect to broader EFT and distinguish between linear and quadratic effects in the observables
- CP measurement using the **T Yukawa coupling** at e+e- at 250 GeV with a precision of 75 mrad
 - Higher energy stages, at a TeV or higher, can be used to measure CP effects in the HZZ coupling by studying the ZZ-fusion Higgs production process (to be followed up)
- Higgs-top CP-structure via the tth production at the HL-LHC, FCC-hh and muon colliders.

Bounds on α at 95% CL ($\kappa_t = 1$)	Channel	Collider	Luminosity
$ lpha \lesssim 36^\circ \ [1]$	dileptonic $t\bar{t}(h \rightarrow b\bar{b})$	HL-LHC	$3 { m ~ab^{-1}}$
$ lpha \lesssim 25^\circ$ [2]	$t\bar{t}(h ightarrow \gamma \gamma)$ combination	HL-LHC	$3 { m ~ab^{-1}}$
$ lpha \lesssim 3^\circ$ [1]	dileptonic $t\bar{t}(h \rightarrow b\bar{b})$	$100 { m TeV} { m FCC}$	30 ab^{-1}
$ lpha \lesssim 9^\circ$ [3]	semileptonic $t\bar{t}(h \to b\bar{b})$	$10 \text{ TeV } \mu^+\mu^-$	$10 {\rm ~ab^{-1}}$
$ lpha \lesssim 3^\circ$ [3]	semileptonic $t\bar{t}(h \rightarrow b\bar{b})$	$30 \text{ TeV } \mu^+\mu^-$	$10 {\rm ~ab^{-1}}$

The Higgs self-coupling at future colliders

- CMS & ATLAS projections have been updated
 - New combination can be done ? •
- New since the YR, **FCC-hh** : 2.9-5.5% depending on the systematic assumptions (arXiv:2004.03505)
- **Muon collider** 25% (6%) at 3 (10) TeV •

	3 TeV μ -coll. L \approx 1 ab ⁻¹	10 TeV μ -coll. L= 10 ab ⁻¹	14 TeV μ -coll. L \approx 20 ab ⁻¹	30 TeV μ -coll. L= 90 ab ⁻¹
		68% prob. inte	erval	
$\delta\kappa_\lambda$	[-0.27,0.35] ∪ [0.85,0.94] →[-0.15,0.16] (2× L)	[-0.035, 0.037]	[-0.024, 0.025]	[-0.011, 0.012]

collider	single-H	HH	combined
HL-LHC	100-200%	50%	50%
CEPC ₂₄₀	49%		49%
$C^{3}ILC_{250}$	49%	—	49%
$C^{3}ILC_{500}$	38%	27%	22%
ILC ₁₀₀₀	36%	10%	10%
CLIC ₃₈₀	50%	—	50%
$CLIC_{1500}$	49%	36%	29%
CLIC ₃₀₀₀	49%	9%	9%
FCC-ee	33%	—	33%
FCC-ee (4 IPs)	24%	—	24%
HE-LHC	-	15%	15%
FCC-hh	-	5%	5%

These values are combined with an independent determination of the self-coupling with uncertainty 50% from the HL-LHC.

Higgs production at large p_T

- European Strategy Studies focused on inclusive measurements : new opportunities for measurements of the Higgs couplings at large Q²
 - BSM effects often grow with energy •
 - Clear impact on the extraction of EFT constraints via • correlations among different processes and kinematical regimes
- Also this helps mitigating systematic uncertainties and ٠ maximizes the robustness of the results
 - i.e. pile-up rejection and trigger capabilities •
- Few **examples**:

۲

•

- VH at large invariant mass (double differential distributions • sometime needed to restore BSM/SM interference)
 - Probing the HWW coupling at high Q^2 in pp \rightarrow WH at large • mass or in VBF is complementary to measure $BR(H \rightarrow WW)$
- off-shell $gg \rightarrow H^* \rightarrow ZZ \rightarrow 4I$ •
- Higgs + high-p_T jet

ATLAS+CMS HL-LHC 2022 study

New result in VH to bb and H to $\tau\tau$

Challenges and Opportunities for Higgs Physics

- Why is exploring the Higgs important?
 - 1. It is a fundamental part of the SM
 - 2. In the SM, most everything except the Higgs mass is predicted, so we can make precise comparisons.
- Are existing theory calculations sufficient for the comparisons? How accurately do we need to measure? •
- What do we learn from precision measurements of Higgs properties?
 - Precision is window to high scales. How to make the connection? How important are specific models? in SMEFT framework, $\delta \kappa \sim v^2/M^2$
- Higgs is window to high scale physics
 - Future e+e- colliders give increasingly precise measurements of Higgs couplings • Can we quantify the complementarity with direct searches at high energy machines? This should be studied by exploring the complementarity between HL-LHC and future colliders •
- - (accounting for their different timelines).
- Does EWSB work the way we think it does? •
 - How to best explain the importance of measuring triple Higgs coupling? ٠ We can quantify how well different machines can do....but we need to explain what various target
 - measurements imply
 - How to connect precision of measurement with reach for new particles in models that predict • deviations on the self-coupling?

Summary plots/tables

- Higgs couplings:
 - Include updated list of machines (muon collider, C³ are recent developments) and their parameters (including timelines)
 - Re-visit some of the assumptions (i.e. flavor..) since the ESG
 - Summary of latest theory cross sections (distributions too if available) •
 - New Global fits
- Some example maps of new physics phase space to constraints on EFT • operators
 - Plots that demonstrate in creative ways the BSM sensitivities of • various measurements
- New physics benchmarks for resonant and non-resonant HH that we • could use for interpretations as the precision on the self-coupling improves

Extra

Higgs physics at the HL-LHC

NEW!

ATLAS+CMS HL-LHC 2022 study

NEW!

H to strange coupling

- Exploring ZH with Z going to leptons or neutrinos •

ECFA WG1 · April 20, 2022

BSM interpretation?

Caterina Vernieri

Extending the sensitivity beyond LHC to 2HDM

A spontaneous flavour violating (SFV) 2HDM allows for large couplings of additional Higgs to strange/light quarks while suppressing flavourchanging neutral currents

The inverse problem

- Progress on how to map BSM models to SMEFT constraints •
 - •

Caterina Vernieri

Include complete 1-loop matching for other models, more NLO effects in fits, and more distributions

ECFA WG1 · April 20, 2022

The inverse problem

- Progress on how to map BSM models to SMEFT constraints •
 - •

Include complete 1-loop matching for other models, more NLO effects in fits, and more distributions

ECFA WG1 · April 20, 2022

Model independent bounds on new physics

Coupling (2σ)	HL-LHC	LHeC	HE-	LHC		ILC			CLIC	C	CEPC	FCO	C-e
Unitarity Bound			S2	S2'	250	500	1000	380	1500	3000		240	36
$2\delta\kappa_V ~[\%]$	3.0	1.5	2.6	1.8	0.58	0.46	0.44	1.0	0.32	0.22	0.28	0.40	0.3
$\Lambda_V ~({ m TeV})$	6.0	9	6.4	7.7	14	15	16	10	18	22	20	16	18
$2\kappa_g \ [\%]$	4.6	7.2	3.8	2.4	4.6	1.94	1.32	5.0	2.6	1.8	3.0	3.4	2.
$\Lambda_g ~({ m TeV})$	51	41	56	70	51	78	95	49	68	81	63	59	77
$2\kappa_\gamma~[\%]$	3.8	15.2	3.2	2.4	13.4	6.8	3.8	196	10	4.4	7.4	9.4	7.
$\Lambda_{\gamma} ~({ m TeV})$	120	61	130	150	65	92	120	17	76	110	88	78	86
$2\kappa_{Z\gamma}$ [%]	20	_	11.4	7.6	198	172	170	240	30	13.8	16.4	162	15
$\Lambda_{Z\gamma}$ (TeV)	34	_	45	55	11	12	12	10	28	41	37	12	12
$2\delta\kappa_t \ [\%]$	6.6	_	5.6	3.4	_	13.8	3.2	-	_	5.4	_	_	_
$\Lambda_t ~({\rm TeV})$	13	—	14	18	_	9	19	-	_	14	_	_	_
$2\delta\kappa_b \ [\%]$	7.2	4.2	6.4	4.6	3.6	1.16	0.96	3.8	0.92	0.74	2.4	2.6	1.3
$\Lambda_b ~({ m TeV})$	80	100	85	100	110	200	220	110	220	250	140	130	18
$2\delta\kappa_{\mu}$ [%]	9.2	_	5.0	3.4	30	18.8	12.4	640	26	11.6	17.8	20	17
$\Lambda_{\mu} \ ({ m TeV})$	590	_	800	970	320	410	510	70	350	520	420	400	42
$2\delta\kappa_{ au}$ [%]	3.8	6.6	3.0	2.2	3.8	1.40	1.14	6.0	2.6	1.76	2.6	2.8	1.4
$\Lambda_{ au}$ (TeV)	220	170	250	290	220	370	410	180	270	330	270	260	36
$2\delta\kappa_h$ [%]	94	_	40	40	58	54	20	92	72	22	34	38	38
Λ_h (TeV)	15	_	23	23	19	19	32	15	17	30	25	23	23

Caterina Vernieri

arXiv:2203.09512

ECFA WG1 · April 20, 2022

Higgs & (SM?)EFT

•

- We will be working closely together with EF04 within the SMEFT framework:
 - theoretical constraints (positivity, analyticity)
 - More combined Higgs and top analysis •
 - 1. effects of top dipoles or 4 fermion ops. with tops
 - (particularly relevant for low-energy colliders below ttH threshold)
 - Include differential observables •
 - Explore more flavor scenarios (and make connection with flavor data) •
- SMEFT is a baseline, how we account for specific assumptions and model-dependency? •
 - Complementarity with new physics searches •

Caterina Vernieri (SLAC)

EF01 · Open questions and new ideas · July 22, 2020

see also C. Grojean's talk

Estimate EFT uncertainties (NLO, dim-8 effects, linear vs quadratic...), new physics in backgrounds,

2. constraints on top EW couplings from their NLO effects in Higgs and diboson processes

Wish list for the global fit

Inputs: Higgs @ HL-LHC

HL-LHC	3 ab-1 @ 14 TeV ATLAS+CMS (S2)								
prod.	ggH	VBF	WH	ZH	ttH				
σ	-	-	-	-					
σxBR _{bb}	19.1	-	8.3	4.6	10.2				
σxBRcc	-	-	-	-	-				
σxBR _{gg}	-	-	-	-	-				
σxBRzz	2.5	9.5	32.1	58.3	15.2				
σxBR _{ww}	2.5	5.5	9.9	12.8	6.6				
σxBRττ	4.5	3.9	-	-	10.2				
σxBR _{γγ}	2.5	7.9	9.9	13.2	5.9				
σxBR _{γz}	24.4	51.2	-	-	-				
σxBR _{µµ}	11.1	30.7	-	-	-				
σxBR _{inv} .	-	2.5	-	-	-				
m _H	10-20MeV								

wishlist: correlation matrix; differential x-section is not included now, but can be considered if available

<u>EF04 link</u>

Caterina Vernieri

ECFA WG1 · April 20, 2022

in unit of %

Accuracy vs. Luminosity

ECFA WG1 · April 20, 2022

arXiv:1506.07830

