Imprint of quark flavor violating SUSY in h(125) decays at future lepton colliders

K. Hidaka Tokyo Gakugei University

Collaboration with H. Eberl, E. Ginina (HEPHY Vienna)

References:

Phys. Rev. D 91 (2015) 015007 [arXiv:1411.2840 [hep-ph]] JHEP 1606 (2016) 143 [arXiv:1604.02366 [hep-ph]] IJMP A34 (2019) 1950120 [arXiv:1812.08010 [hep-ph]] PoS(EPS-HEP2021)594, 2021 [arXiv:2111.02713 [hep-ph]] ILC White Paper for Snowmass 2021 [arXiv:2203.07622]

1st Workshop of the ECFA Higgs/Top/EW factory WG1 - HTE group, 20 Apr. 2022, CREN

1. Introduction

- What is the SM-like Higgs boson discovered at LHC?
- It can be the SM Higgs boson.
- It can be a Higgs boson of New Physics.
- This is one of the most important issues in the present particle physics field!
- Here we study a possibility that it is the lightest Higgs boson h° of the Minimal Supersymmetric Standard Model (MSSM), focusing on the decays $h^{\circ}(125) \rightarrow c \overline{c}$, $b \overline{b}$, $b \overline{s}$, $\gamma \gamma$, g.

2. MSSM with QFV

Key parameters in this study are: * QFV parameters: $\tilde{c}_{L/R} - \tilde{t}_{L/R} \& \tilde{s}_{L/R} - \tilde{b}_{L/R}$ mixing parameters * QFC parameter: $\tilde{t}_L - \tilde{t}_R \& \tilde{b}_L - \tilde{b}_R$ mixing parameters $M_{023}^2 = (\tilde{c}_L - \tilde{t}_L \text{ mixing parameter})$ $M_{I/23}^2 = (\tilde{c}_R - \tilde{t}_R \text{ mixing parameter})$ $M_{D23}^2 = (\tilde{s}_R - \tilde{b}_R \text{ mixing parameter})$ $T_{I/23} = (\tilde{c}_R - \tilde{t}_L \text{ mixing parameter})$ $T_{U32} = (\tilde{c}_L - \tilde{t}_R \text{ mixing parameter})$ $T_{U33} = (\tilde{t}_L - \tilde{t}_R \text{ mixing parameter})$ $T_{D23} = (\tilde{s}_R - \tilde{b}_L \text{ mixing parameter})$ $T_{D32} = (\tilde{s}_L - \tilde{b}_R \text{ mixing parameter})$ $T_{D33} = (\tilde{b}_L - \tilde{b}_R \text{ mixing parameter})$

3. Constraints on the MSSM

We respect the following experimental and theoretical constraints:

- (1) The LHC limits on the masses of squarks, sleptons, gluino, charginos and neutralinos.
- (2) The constraint on $(m_{A/H^+}, tan\beta)$ from MSSM Higgs boson search at LHC.
- (3) The constraints on the QFV parameters from the B & K meson data.

$$B(b \to s \gamma) \quad \Delta M_{Bs} \quad B(B_s \to \mu^+ \mu^-) \quad B(B_u^+ \to \tau^+ \nu) \text{ etc.}$$

- (4) The constraints from the observed Higgs boson mass and couplings at LHC; e.g. $121.6 \text{ GeV} < m_h^0 < 128.6 \text{ GeV}$ (allowing for theoretical uncertainty), $0.71 < \kappa_b < 1.43$ (ATLAS), $0.56 < \kappa_b < 1.70$ (CMS)
- (5) The experimental limit on SUSY contributions to the electroweak ρ parameter $\Delta \rho$ (SUSY) < 0.0012.
- (6) Theoretical constraints from the vacuum stability conditions for the trilinear couplings $T_{U\alpha\beta}$ and $T_{D\alpha\beta}$.

4. Parameter scan

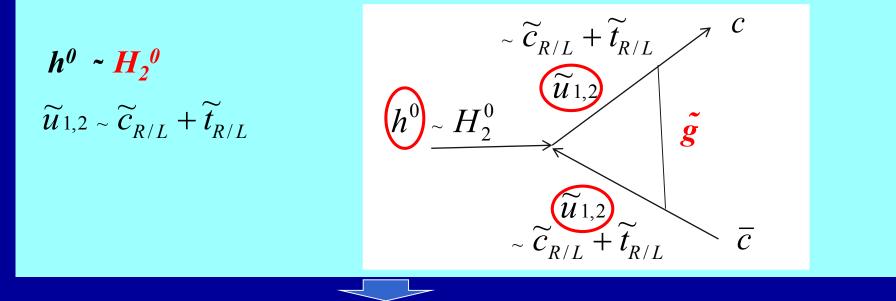
- We compute the $h^0(125)$ decay widths in the MSSM with QFV.
- We take parameter scan ranges as follows:

 $1 TeV < M_{SUSY} < 5 TeV$

 $\begin{array}{l} 10 < \tan \beta < 80 \\ 2500 < M_3 < 5000 \ GeV \\ 100 < M_2 < 2500 \ GeV \\ 100 < M_1 < 2500 \ GeV \\ 100 < \mu < 2500 \ GeV \\ 1350 < m_A(pole) < 6000 \ GeV \\ etc. \ etc. \end{array}$

- In the parameter scan, all of the relevant experimental and theoretical constraints are imposed.
- 377180 parameter points are generated and 3208 points survive the constraints.

5. $\underline{h^0} \rightarrow c \overline{c}, b \overline{b}, b \overline{s} \text{ in the MSSM}$

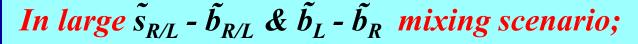

- We compute the decay widths $\Gamma(h^0 \to c \ \overline{c})$, $\Gamma(h^0 \to b \ \overline{b})$, and $\Gamma(h^0 \to b \ \overline{s})$ at full 1-loop level in the DRbar renormalization scheme in the MSSM with QFV.
- Main 1-loop correction to $h^0 \rightarrow c \ \overline{c}$:

gluino - su loops [su = $(\tilde{t} - \tilde{c} mixture)$] can be enhanced by large trilinear couplings T_{U23} , T_{U32} , T_{U33}

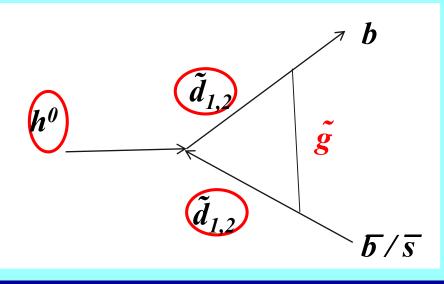
- Main 1-loop corrections to $h^0 \rightarrow b \ \overline{b} \& b \ \overline{s}$:

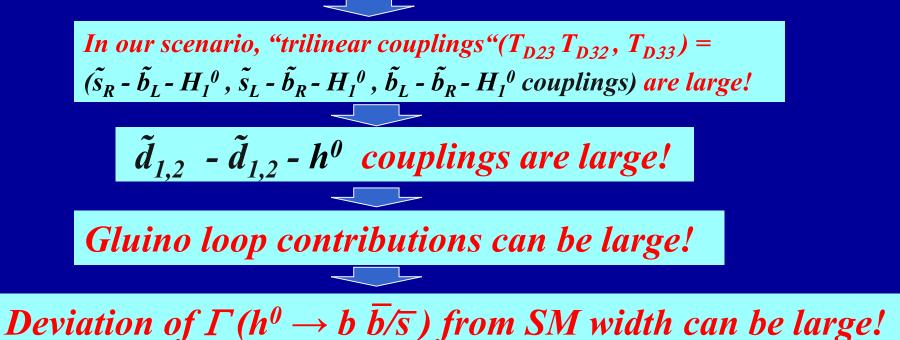
gluino – sd loops [sd = (\tilde{b} - \tilde{s} mixture)] can be enhanced by large trilinear couplings T_{D23} , T_{D32} , T_{D33} chargino - su loops [su = (\tilde{t} - \tilde{c} mixture)] can be enhanced by large trilinear couplings T_{U23} , T_{U32} , T_{U33}

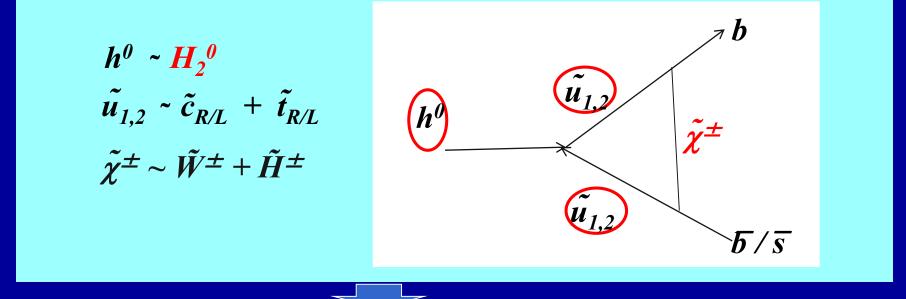
In large $\widetilde{c}_{R/L} - \widetilde{t}_{R/L} \& \widetilde{t}_{L} - \widetilde{t}_{R}$ mixing scenario;



In our scenario, "trilinear couplings" ($\widetilde{c}_R - \widetilde{t}_L - H_2^0$, $\widetilde{c}_L - \widetilde{t}_R - H_2^0$, $\widetilde{t}_L - \widetilde{t}_R - H_2^0$ couplings) = ($T_{U23} T_{U32}$, T_{U33}) are large!


Gluino loop contributions can be large!


Deviation of $\Gamma(h^0 \rightarrow c \ \overline{c})$ from SM width can be large!



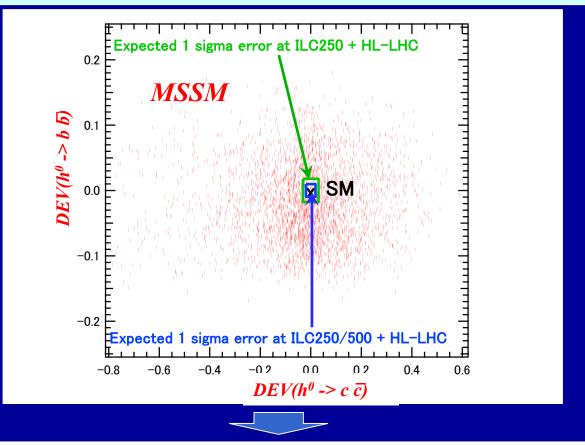
In large $\tilde{c}_{R/L}$ - $\tilde{t}_{R/L}$ & \tilde{t}_L - \tilde{t}_R mixing scenario;

In our scenario, "trilinear couplings" ($\widetilde{c}_R - \widetilde{t}_L - H_2^0$, $\widetilde{c}_L - \widetilde{t}_R - H_2^0$, $\widetilde{t}_L - \widetilde{t}_R - H_2^0$ couplings) = ($T_{U23} T_{U32}$, T_{U33}) are large!

 $\widetilde{u}_{1,2} - \widetilde{u}_{1,2} - h^0$ couplings are large!

Chargino loop contributions can be large!

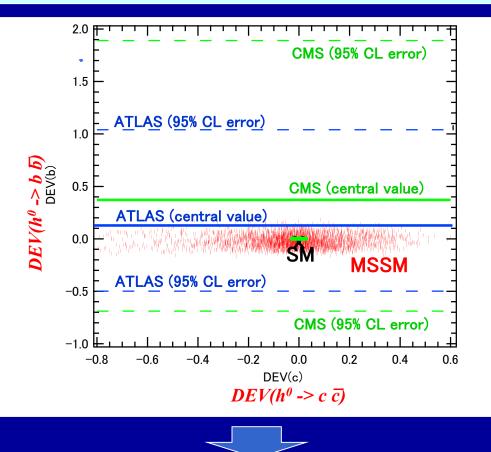
Deviation of $\Gamma(h^0 \rightarrow b \ \overline{b}/\overline{s})$ from SM width can be large!


5.1 Deviation of the width from the SM prediction

- The deviation of the width from the SM prediction:

 $\overline{DEV(h^{\theta} \rightarrow X\overline{X})} = \Gamma(h^{\theta} \rightarrow X\overline{X})_{MSSM} / \Gamma(h^{\theta} \rightarrow X\overline{X})_{SM} - 1$

X = c, b

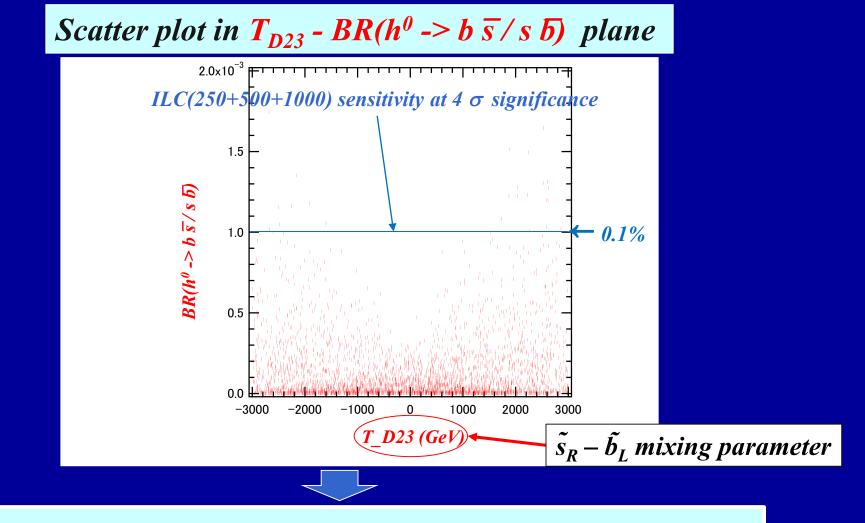

Scatter plot in $DEV(h^{\theta} \rightarrow c \ \overline{c}) - DEV(h^{\theta} \rightarrow b \ \overline{b})$ plane

- $DEV(h^{0} \rightarrow c \ \overline{c})$ and $DEV(h^{0} \rightarrow b \ \overline{b})$ can be very large simultaneously!: $DEV(h^{0} \rightarrow c \ \overline{c})$ can be as large as $\sim \pm 60\%$. $DEV(h^{0} \rightarrow b \ \overline{b})$ can be as large as $\sim \pm 20\%$.

- ILC can observe such large deviations from SM at high significance (arXiv:1908.11299)!:
 △ DEV(h⁰ -> c c̄) = (3.60%, 2.40%, 1.58%) at (ILC250, ILC500, ILC1000)
 △ DEV(h⁰ -> b b̄) = (1.98%, 1.16%, 0.94%) at (ILC250, ILC500, ILC1000)

Scatter plot in $DEV(h^{\theta} \rightarrow c \ \overline{c}) - DEV(h^{\theta} \rightarrow b \ \overline{b})$ plane

- Recent LHC data: $DEV(h^0 \rightarrow b \ \overline{b}) = 0.12 + 0.92/-0.62 = [-0.50, 1.04]$ (ATLA S) (arXiv:1909.02845) $DEV(h^0 \rightarrow b \ \overline{b}) = 0.37 + 1.52/-1.06 = [-0.69, 1.89]$ (CMS) (arXiv:1809.10733)
- Both SM and MSSM are consistent with the recent ATLAS/CMS data! The errors of the recent ATLAS/CMS data are too large!


5.2 <u>BR($h^0 \rightarrow b \ \overline{s} / s \ \overline{b}$)</u>

 $BR(h^{\theta} \rightarrow b \ \overline{s} / s \ \overline{b}) \cong \theta \ (SM)$

$BR(h^0 \rightarrow b \overline{s} / s \overline{b})$ can be as large as ~ 0.2% (MSSM with QFV)! (See also Gomez-Heinemeyer-Rehman, PR D93 (2016) 095021 [arXiv:1511.04342].)

ILC(250+500+1000) sensitivity could be ~ 0.1% (at 4 σ significance)!

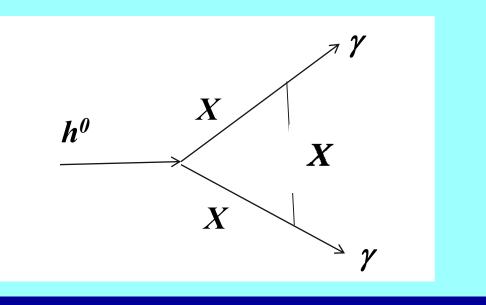
Private communication with Junping Tian; See also Barducci et al., JHEP 12 (2017) 105 [arXiv:1710.06657].

- -There is a strong correlation between T_{D23} $BR(h^0 \rightarrow b \overline{s}/s \overline{b})!$
- $BR(h^0 \rightarrow b \overline{s} / s \overline{b})$ can be as large as 0.2% for large T_{D23} !
- ILC(250 + 500 + 1000) sensitivity could be ~ 0.1% at 4 sigma significance! Private communication with Junping Tian; See also Barducci et al., JHEP 12 (2017) 105 [arXiv:1710.06657].
- LHC & HL-LHC sensitivity should not be so good due to huge QCD BG!

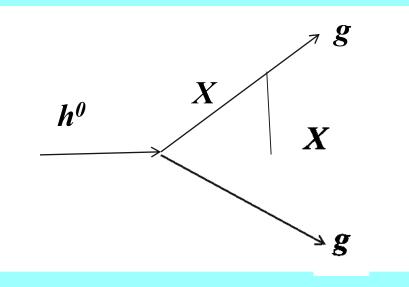
6. $h^0 \rightarrow \gamma \gamma$, g g in the MSSM

- As the h⁰ decays to photon photon and gluon gluon are loop-induced decays, these decays are very sensitive to New Physics!
- We compute the widths $\Gamma(h^0 \to \gamma \gamma)$ and $\Gamma(h^0 \to g g)$ at NLO QCD level in the MSSM with QFV.
- Main 1-loop contributions to $h^0 \rightarrow \gamma \gamma$:

 $[W^+/top-quark/su] - loops [su = (\tilde{t} - \tilde{c} mixture)]$

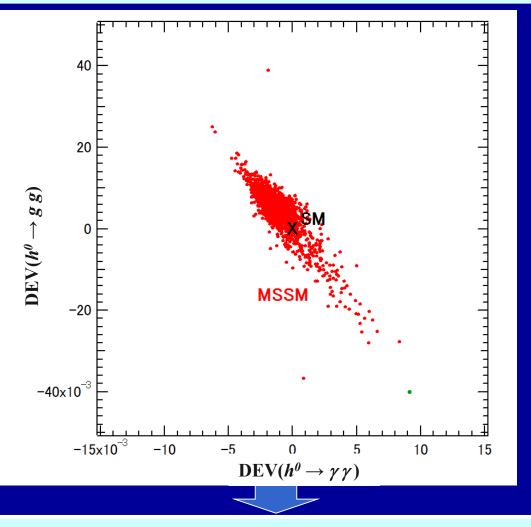

The su-loops can be enhanced by large trilinear couplings T_{U23} , T_{U32} , T_{U33} , resulting in sizable deviation of $\Gamma(h^0 \rightarrow \gamma \gamma)$ from the SM width!

- Main 1-loop contributions to $h^0 \rightarrow g g$:


 $[top-quark / su] - loops [su = (\tilde{t} - \tilde{c} mixture)]$

The su-loops can be enhanced by large trilinear couplings T_{U23} , T_{U32} , T_{U33} , resulting in sizable deviation of $\Gamma(h^0 \to g g)$ from the SM width!

 $X = W^+ / t / \tilde{u}_{1,2}$



 $X = t / \tilde{u_{1,2}}$

- We perform a MSSM parameter scan respecting all the relevant theoretical and experimental constraints.
- From the parameter scan, we find the followings:
- (1) $DEV(h^0 \rightarrow \gamma \gamma)$ and $DEV(h^0 \rightarrow g g)$ can be sizable simultaneously: $DEV(h^0 \rightarrow \gamma \gamma)$ can be as large as ~ $\pm 1\%$, $DEV(h^0 \rightarrow g g)$ can be as large as ~ $\pm 4\%$.
- (2) There is a very strong correlation between $DEV(h^0 \rightarrow \gamma \gamma)$ and $DEV(h^0 \rightarrow g g)$. This correlation is due to the fact that the stop-loop (stop-scharm mixture loop) contributions dominate the two DEVs.
- (3) The deviation of the width ratio $\Gamma(h^0 \to \gamma \gamma) / \Gamma(h^0 \to g g)$ in the MSSM from the SM value can be as large as ~ ±5%.

Scatter plot in DEV($h^{\theta} \rightarrow \gamma \gamma$) - DEV($h^{\theta} \rightarrow g g$) plane

- DEV($h^{\theta} \rightarrow \gamma \gamma$) and DEV($h^{\theta} \rightarrow g g$) can be sizable simultaneously!

- -There is a strong correlation between $\text{DEV}(h^0 \rightarrow \gamma \gamma)$ and $\text{DEV}(h^0 \rightarrow g g)!$
- Future lepton colliders such as ILC can observe such sizable deviations from SM! (See arXiv:1908.11299 and Backup slides))

7. Conclusion

- We have studied the decays

 h^{θ} (125GeV) $\rightarrow c \overline{c}, b \overline{b}, b \overline{s}, \gamma \gamma, g g in the MSSM with QFV.$

- Performing a systematic MSSM parameter scan respecting all of the relevant theoretical and experimental constraints, we have found the followings:
 - * $DEV(h^{0} \rightarrow c \ c)$ and $DEV(h^{0} \rightarrow b \ b)$ can be very large simultaneously! : $DEV(h^{0} \rightarrow c \ c)$ can be as large as $\sim \pm 60\%$, $DEV(h^{0} \rightarrow b \ b)$ can be as large as $\sim \pm 20\%$.
 - * The deviation of the width ratio $\Gamma(h^0 \rightarrow b \overline{b}) / \Gamma(h^0 \rightarrow c \overline{c})$ from the SM value can exceed ~ +100%.
 - * BR(h⁰ -> b s̄ / s b̄) can be as large as ~ 0.2%!
 ILC(250 + 500 + 1000) sensitivity could be ~ 0.1% at 4 sigma signal significance!

- * $DEV(h^0 \rightarrow \gamma \gamma)$ and $DEV(h^0 \rightarrow g g)$ can be sizable simultaneously! : $DEV(h^0 \rightarrow \gamma \gamma)$ can be as large as $\sim \pm 1\%$, $DEV(h^0 \rightarrow g g)$ can be as large as $\sim \pm 4\%$.
- * The deviation of the width ratio $\Gamma(h^0 \rightarrow \gamma \gamma)/\Gamma(h^0 \rightarrow g g)$ from the SM value can be as large as ~ $\pm 5\%$.
- * There is a very strong correlation between $DEV(h^0 \rightarrow \gamma \gamma)$ and $DEV(h^0 \rightarrow g g)$. This correlation is due to the fact that the stop-loop (stop-scharm mixture loop) contributions dominate the two DEVs.
- All of these large deviations in the h⁰ (125) decays are due to large c̃ - t̃ mixing & large c̃ / t̃ involved trilinear couplings T_{U23}, T_{U32}, T_{U33} and large s̃ - b̃ mixing & large s̃ / b̃ involved trilinear couplings T_{D23}, T_{D32}, T_{D33}.
- Future lepton colliders such as ILC, CLIC, CEPC, FCC-ee can observe such large deviations from SM at high significance!
- In case the deviation pattern shown here is really observed at the future lepton colliders, then it would strongly suggest the discovery of QFV SUSY (MSSM with QFV)!
- See next slide also.

- Our analysis suggests the following:

PETRA/TRISTAN e- e+ collider discovered virtual Z⁰ effect for the first time. Later, CERN p p collider discovered the Z⁰ boson.

Similarly, lepton colliders, such as ILC, could discover virtual Sparticle effects for the first time in h⁰(125) decays! Later, FCC-hh p p collider could discover the Sparticles!

Thank you!

2. MSSM with QFV

The basic parameters of the MSSM with **QFV**:

 $\{ \tan\beta, m_A, M_1, M_2, M_3, \mu, M_{Q,\alpha\beta}^2, M_{U,\alpha\beta}^2, M_{D,\alpha\beta}^2, T_{U\alpha\beta}, T_{D\alpha\beta} \}$ (at Q = 1 TeV scale) ($\alpha, \beta = 1, 2, 3 = u, c, t \text{ or } d, s, b$)

tan β : ratio of VEV of the two Higgs doublets $\langle H^{\theta}_{2} \rangle / \langle H^{\theta}_{1} \rangle$

m_A: *CP* odd Higgs boson mass (pole mass)

 $M_{1,} M_{2}, M_{3}$: U(1), SU(2), SU(3) gaugino masses μ : higgsino mass parameter

 $M^2_{Q,\alpha\beta}$: left squark soft mass matrix

 $M^2_{U\alpha\beta}$: right up-type squark soft mass matrix

 $M^2_{D\alpha\beta}$: right down-type squark soft mass matrix

 $T_{U\alpha\beta}$: trilinear coupling matrix of up-type squark and Higgs boson

 $T_{D\alpha\beta}$: trilinear coupling matrix of down-type squark and Higgs boson

2. <u>Key parameters of MSSM</u>

Key parameters in this study are:

* QFV parameters: M^2_{023} , M^2_{U23} , M^2_{D23} , T_{U23} , T_{U32} , T_{D23} , T_{D23} , T_{D32} * QFC parameter: T_{U33} , T_{D33} $M_{023}^2 = (\tilde{c}_L - \tilde{t}_L \text{ mixing parameter})$ $M^{2}_{II23} = (\tilde{c}_{R} - \tilde{t}_{R} \text{ mixing parameter})$ $M^2_{D23} = (\tilde{s}_R - \tilde{b}_R mixing parameter)$ $T_{U23} = (\tilde{c}_R - \tilde{t}_L \text{ mixing parameter})$ $T_{U32} = (\tilde{c}_L - \tilde{t}_R \text{ mixing parameter})$ $T_{II33} = (\tilde{t}_L - \tilde{t}_R \text{ mixing parameter})$ $T_{D23} = (\tilde{s}_R - \tilde{b}_L \text{ mixing parameter})$ $T_{D32} = (\tilde{s}_L - \tilde{b}_R \text{ mixing parameter})$ $T_{D33} = (\tilde{b}_L - \tilde{b}_R \text{ mixing parameter})$

4. <u>Parameter scan for h⁰ decay in the MSSM</u>

Table 1: Scanned ranges and fixed values of the MSSM parameters (in units of GeV or GeV², except for tan β). The parameters that are not shown explicitly are taken to be zero. $M_{1,2,3}$ are the U(1), SU(2), SU(3) gaugino mass parameters.

an eta	M_1	M_2	M_3	μ	$m_A(pole)$
$10 \div 80$	$100 \div 2500$	$100\div2500$	$2500 \div 5000$	$100\div 2500$	$1350 \div 6000$
M_{Q22}^{2}	M_{Q33}^{2}	$ M^2_{Q23} $	M_{U22}^{2}	M_{U33}^{2}	$ M_{U23}^2 $
$2500^2 \div 4000^2$	$2500^2 \div 4000^2$	$< 1000^{2}$	$1000^2 \div 4000^2$	$600^2\div 3000^2$	$< 2000^{2}$
M_{D22}^{2}	M_{D33}^{2}	$ M_{D23}^2 $	$ T_{U23} $	$ T_{U32} $	$ T_{U33} $
$2500^2 \div 4000^2$	$1000^2 \div 3000^2$	$< 2000^{2}$	< 4000	< 4000	< 5000
$ T_{D23} $	$ T_{D32} $	$ T_{D33} $	$ T_{E33} $		
< 3000	< 3000	< 4000	< 500		

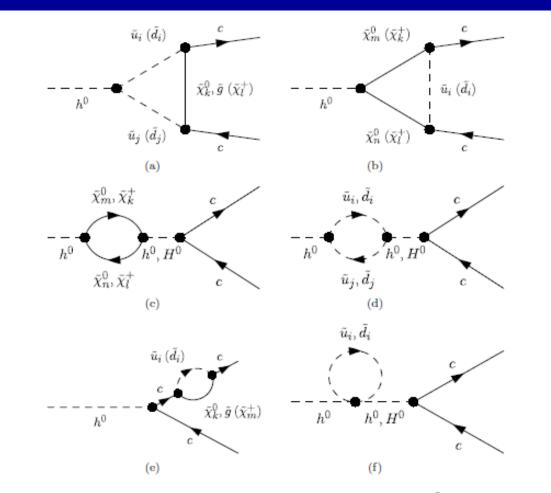
M_{Q11}^2	M_{U11}^2	M_{D11}^2	M_{L11}^2	M^2_{L22}	M_{L33}^2	M_{E11}^2	M_{E22}^2	M_{E33}^2
4500^{2}	4500^{2}	4500^{2}	1500^{2}	1500^{2}	1500^{2}	1500^{2}	1500^{2}	1500^{2}

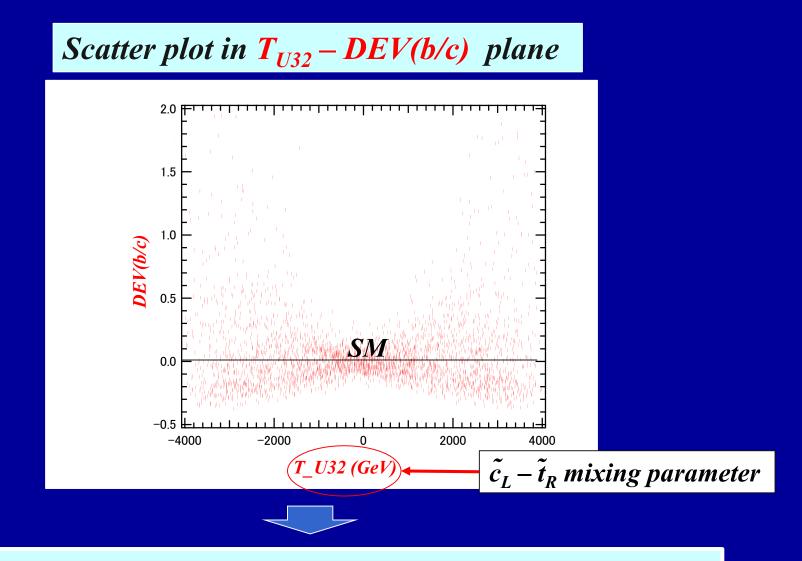
Constraints on the MSSM parameters from <u>K & B meson and h⁰ data:</u>

Table 5: Constraints on the MSSM parameters from the K- and B-meson data relevant mainly for the mixing between the second and the third generations of squarks and from the data on the h^0 mass and couplings κ_b , κ_g , κ_γ . The fourth column shows constraints at 95% CL obtained by combining the experimental error quadratically with the theoretical uncertainty, except for $B(K_L^0 \to \pi^0 \nu \bar{\nu})$, m_{h^0} and $\kappa_{b,g,\gamma}$.

Observable	Exp. data	Theor. uncertainty	Constr. (95%CL)
$ \begin{array}{c} 10^{3} \times \epsilon_{K} \\ 10^{15} \times \Delta M_{K} [\text{GeV}] \\ 10^{9} \times \mathcal{B}(K_{L}^{0} \rightarrow \pi^{0} \nu \bar{\nu}) \\ 10^{10} \times \mathcal{B}(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}) \\ \Delta M_{B_{s}} [\text{ps}^{-1}] \\ 10^{4} \times \mathcal{B}(b \rightarrow s \gamma) \\ 10^{6} \times \mathcal{B}(b \rightarrow s \ l^{+} l^{-}) \\ (l = e \text{ or } \mu) \\ 10^{9} \times \mathcal{B}(B_{s} \rightarrow \mu^{+} \mu^{-}) \\ 10^{4} \times \mathcal{B}(B^{+} \rightarrow \tau^{+} \nu) \\ m_{h^{0}} [\text{GeV}] \\ \kappa_{b} \\ \kappa_{g} \\ \kappa_{\gamma} \end{array} $	$\begin{array}{c} \text{Exp. data} \\ \hline 2.228 \pm 0.011 \ (68\% \ \text{CL}) \ [21] \\ 3.484 \pm 0.006 \ (68\% \ \text{CL}) \ [21] \\ < 3.0 \ (90\% \ \text{CL}) \ [21] \\ 1.7 \pm 1.1 \ (68\% \ \text{CL}) \ [21] \\ 17.757 \pm 0.021 \ (68\% \ \text{CL}) \ [21, 41] \\ 3.32 \pm 0.15 \ (68\% \ \text{CL}) \ [21, 41] \\ 1.60 \ ^{+0.48} \ (68\% \ \text{CL}) \ [21, 41] \\ 1.60 \ ^{+0.48} \ (68\% \ \text{CL}) \ [43] \\ \hline 2.69 \ ^{+0.37} \ (68\% \ \text{CL}) \ [43] \\ \hline 2.69 \ ^{+0.37} \ (68\% \ \text{CL}) \ [45] \\ 1.06 \ ^{\pm 0.19} \ (68\% \ \text{CL}) \ [41] \\ 125.09 \ ^{\pm } 0.24 \ (68\% \ \text{CL}) \ [48] \\ 1.06 \ ^{+0.37} \ (95\% \ \text{CL}) \ [50] \\ 1.17 \ ^{+0.53} \ (95\% \ \text{CL}) \ [50] \\ 1.03 \ ^{+0.12} \ (95\% \ \text{CL}) \ [51] \\ 1.00 \ ^{\pm 0.12} \ (95\% \ \text{CL}) \ [50] \\ 1.18 \ ^{+0.27} \ (95\% \ \text{CL}) \ [50] \\ 1.07 \ ^{+0.27} \ (95\% \ \text{CL}) \ [51] \\ \hline \end{array}$	$\begin{array}{c} \pm 0.28 \ (68\% \ {\rm CL}) \ [40] \\ \pm 1.2 \ (68\% \ {\rm CL}) \ [40] \\ \pm 0.002 \ (68\% \ {\rm CL}) \ [21] \\ \pm 0.04 \ (68\% \ {\rm CL}) \ [21] \\ \pm 2.7 \ (68\% \ {\rm CL}) \ [42] \\ \pm 0.23 \ (68\% \ {\rm CL}) \ [42] \\ \pm 0.11 \ (68\% \ {\rm CL}) \ [44] \\ \pm 0.23 \ (68\% \ {\rm CL}) \ [44] \\ \pm 0.23 \ (68\% \ {\rm CL}) \ [46] \\ \pm 0.29 \ (68\% \ {\rm CL}) \ [47] \\ \pm 3 \ [49] \end{array}$	$\begin{array}{c} 2.228 \pm 0.549 \\ 3.484 \pm 2.352 \\ < 3.0 (90\% \text{ CL}) \\ 1.7^{+2.16}_{-1.70} \\ 17.757 \pm 5.29 \\ 3.32 \pm 0.54 \\ 1.60 \stackrel{+0.97}_{-0.91} \\ 2.69 \stackrel{+0.85}_{-0.82} \\ 1.06 \pm 0.69 \\ 125.09 \pm 3.48 \\ 1.06 \stackrel{+0.37}_{-0.53} \text{ (ATLAS)} \\ 1.17 \stackrel{+0.53}_{-0.61} \text{ (CMS)} \\ 1.03 \stackrel{+0.14}_{-0.12} \text{ (ATLAS)} \\ 1.18 \stackrel{+0.31}_{-0.27} \text{ (CMS)} \\ 1.00 \pm 0.12 \text{ (ATLAS)} \\ 1.07 \stackrel{+0.27}_{-0.29} \text{ (CMS)} \end{array}$
	-0.29 (1997) (197		-0.29

Main SUSY one-loop contributions to $h^0 \rightarrow c \overline{c}$




Figure 2: The main one-loop contributions with SUSY particles in $h^0 \rightarrow c\bar{c}$. The corresponding diagram to (e) with the self-energy contribution to the other charm quark is not shown explicitly.

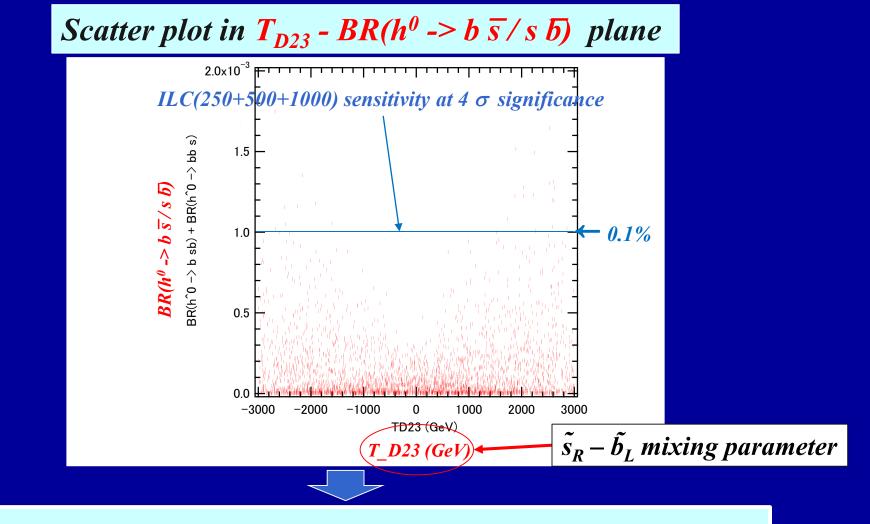
5.2 Deviation of width ratio from the SM prediction

- The deviation of the width ratio from the SM prediction:

 $DEV(b/c) = [\Gamma(b) / \Gamma(c)]_{MSSM} / [\Gamma(b) / \Gamma(c)]_{SM} - 1$

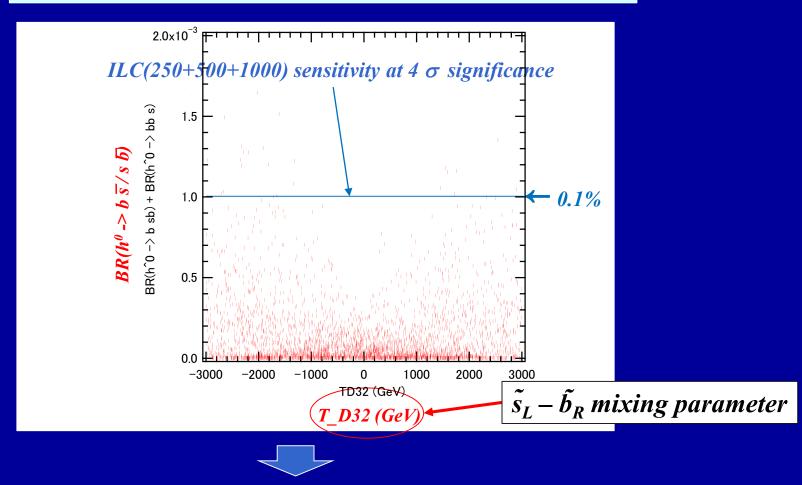
 $\Gamma(X) = \Gamma(h^{\theta} -> XX)$

-There is a strong correlation between $T_{U32} - DEV(b/c)$! - DEV(b/c) can exceed ~ +100% for large T_{U32} !

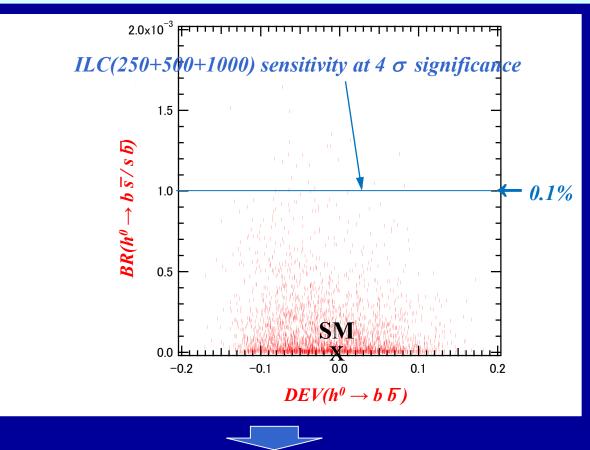

5.2 <u>BR($h^0 \rightarrow b \ \overline{s} / s \ \overline{b}$)</u>

 $BR(h^{\theta} \rightarrow b \ \overline{s} / s \ \overline{b}) \cong \theta \ (SM)$

$BR(h^0 \rightarrow b \ \overline{s} / s \ \overline{b})$ can be as large as ~ 0.2% (MSSM with QFV)! (See also Gomez-Heinemeyer-Rehman, PR D93 (2016) 095021 [arXiv:1511.04342].)

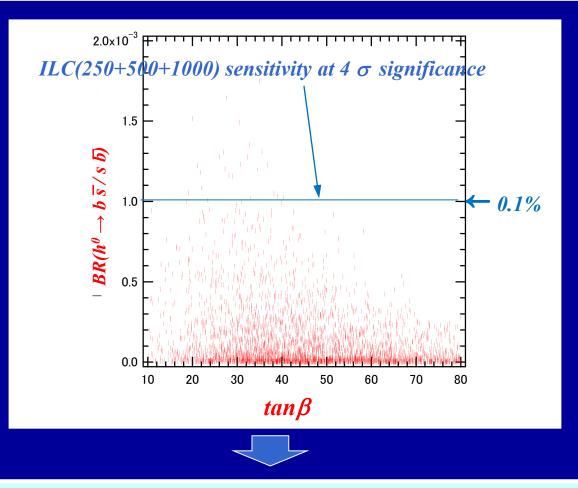

ILC(250+500+1000) sensitivity could be ~ 0.1% (at 4 σ significance)!

Private communication with Junping Tian; See also Barducci et al., JHEP 12 (2017) 105 [arXiv:1710.06657]


- -There is a strong correlation between T_{D23} $BR(h^0 \rightarrow b \overline{s} / s \overline{b})!$
- $BR(h^0 \rightarrow b \overline{s} / s \overline{b})$ can be as large as 0.2% for large T_{D23} !
- ILC(250 + 500 + 1000) sensitivity could be ~ 0.1% at 4 sigma significance! Private communication with Junping Tian; See also Barducci et al., JHEP 12 (2017) 105 [arXiv:1710.06657].
- LHC & HL-LHC sensitivity should not be so good due to huge QCD BG!

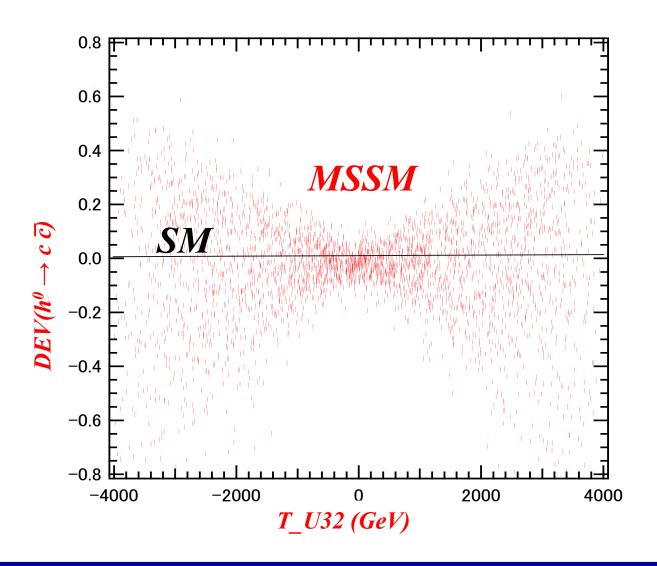
Scatter plot in T_{D32} - $BR(h^{\theta} \rightarrow b \overline{s} / s \overline{b})$ plane

- There is also a strong correlation between T_{D32} - $BR(h^0 \rightarrow b \ \overline{s} / s \ \overline{b})!$ - $BR(h^0 \rightarrow b \ \overline{s} / s \ \overline{b})$ can be as large as 0.2% for large $T_{D32}!$

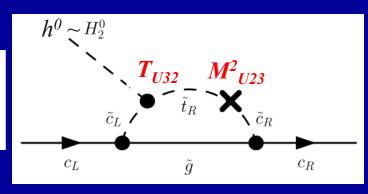

Scatter plot in $BR(h^0 \rightarrow b \ \overline{s} / s \ \overline{b}) - DEV(h^0 \rightarrow b \ \overline{b})$ plane

- There is a strong correlation between $DEV(h^0 \rightarrow b \ \overline{b}) \& BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b})!$

- This is due to the fact that $DEV(h^0 \rightarrow b \ \overline{b}) \& BR(h^0 \rightarrow b \ \overline{s} / s \ \overline{b})$ have a common origin of enhancement effect, i.e. large trilinear couplings $T_{D23,32,33} \& T_{U23,32,33}$.


Scatter plot in $BR(h^0 \rightarrow b \ \overline{s} / s \ \overline{b}) - tan\beta$ plane

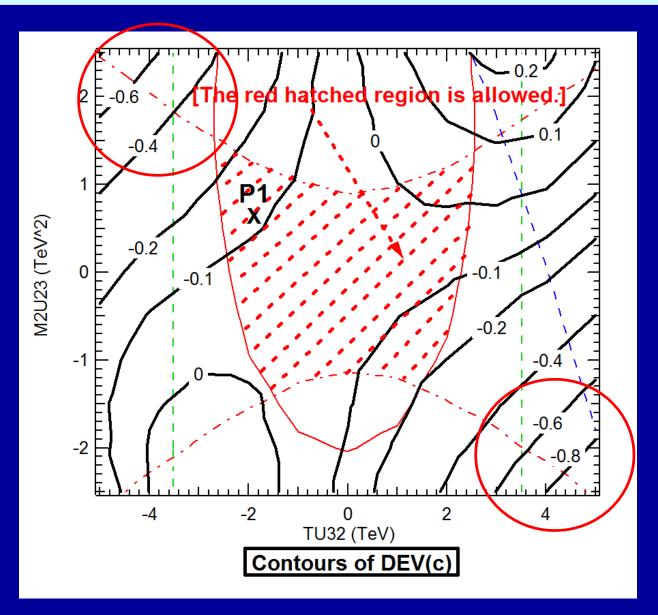
- There is a strong correlation between $BR(h^0 \rightarrow b \ \overline{s} / s \ \overline{b}) \& tan \beta!$


- BR($h^{\theta} \rightarrow b \overline{s} / s \overline{b}$) can be as large as 0.2% for tan $\beta \sim 30!$

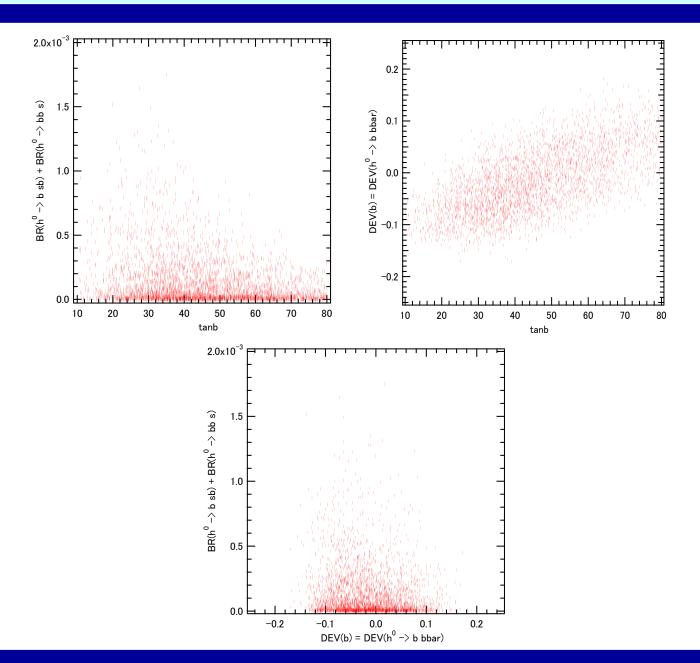
Caveat for very large $DEV(h^{\theta} \rightarrow c \ \overline{c})$

Caveat for very large $DEV(h^{\theta} \rightarrow c \ \overline{c})$

Gluino loop contribution to $h^0 \rightarrow c \ \overline{c}$ can be very large (positive and negative) for large $T_{U32} * M^2_{U23}!$

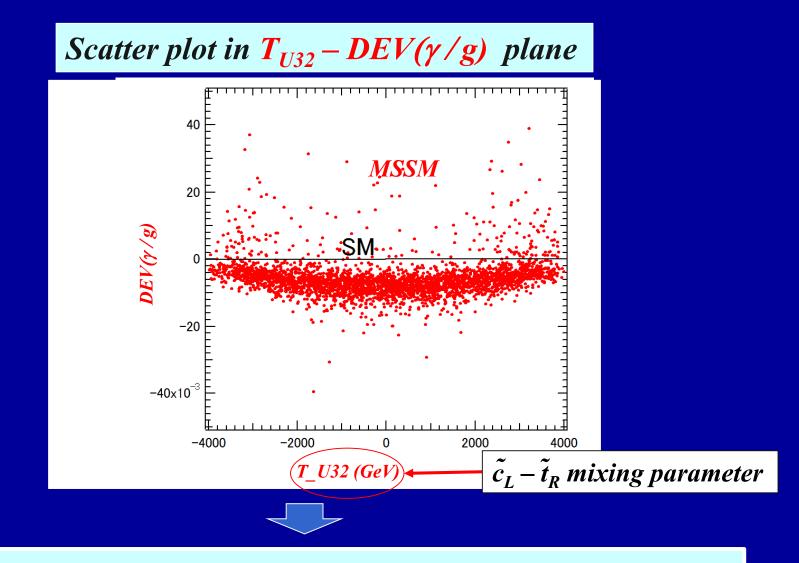

The interference term between the tree diagram and the gluino one-loop diagram can be very large (positive and negative) for large $T_{U32} * M^2_{U23}$, which can lead to even NEGATIVE width $\Gamma(h^0 \rightarrow c \ \overline{c})$ at one-loop level !

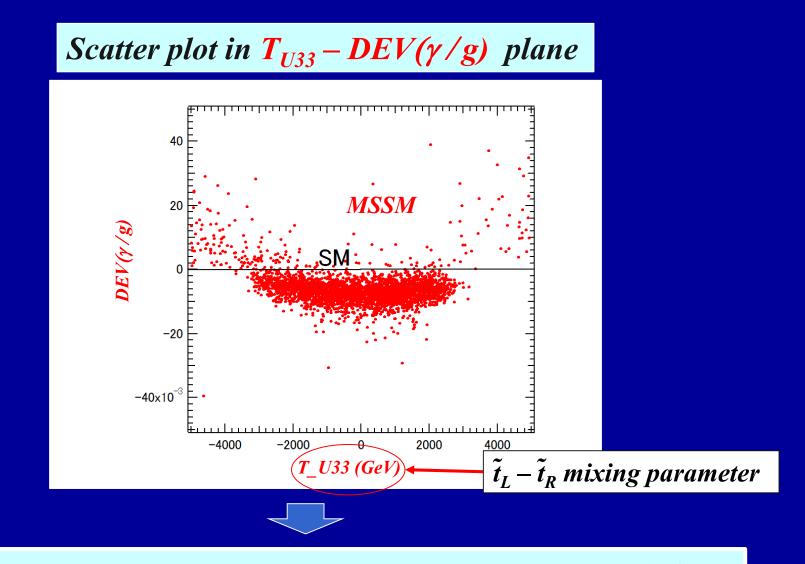
In this case perturbation theory breaks down!


A large deviation of $\Gamma(h^0 \to c \ \overline{c})$ from the SM value is in principle possible due to large values of the product $T_{U32} * M^2_{U23}$.

Since there is no significant physical constraint on this product, the deviation $DEV(h^0 \rightarrow c \ \overline{c})$ can be unnaturally large. So, we show only the results with a deviation from the SM up to ~ +/-60%.

Contours of $DEV(h^0 \rightarrow c \ \overline{c})$ in $T_{U32} - M^2_{U23}$ plane


Correlations among $DEV(h^{\theta} \rightarrow b \overline{b})$, $BR(h^{\theta} \rightarrow b \overline{s} / s \overline{b})$, $tan\beta$

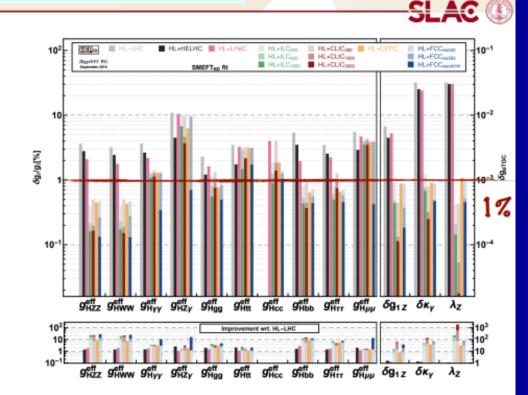

Effect of Resummation of the bottom Yukawa coupling at large $tan\beta$

As for $\Gamma(h^{0} \rightarrow b \overline{b}) \& \Gamma(h^{0} \rightarrow b \overline{s}/s \overline{b})$, we have considered the large tan β enhancement and the resummation of the bottom Yukawa coupling [1]. It turns out, however, that in our case with large m_{A} close to the decoupling Higgs limit, the resummation effect (Δ_{b} effect) is very small (< 0.1%) [2].

 M. Carena et al., Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516].
 H. Eberl, E. Ginina, A. Bartl, K. Hidaka and W. Majerotto, JHEP 06 (2016) 143 [arXiv:1604.02366 [hep-ph]]; E. Ginina, A. Bartl, H. Eberl, K. Hidaka and W. Majerotto, PoS(EPS-HEP2015)146 [arXiv:1510.03714 [hepph]].

-There is a strong correlation between $T_{U32} - DEV(\gamma/g)$! - $DEV(\gamma/g)$ can be as large as ~ +4% for large T_{U32} !

-There is a strong correlation between $T_{U33} - DEV(\gamma/g)$!

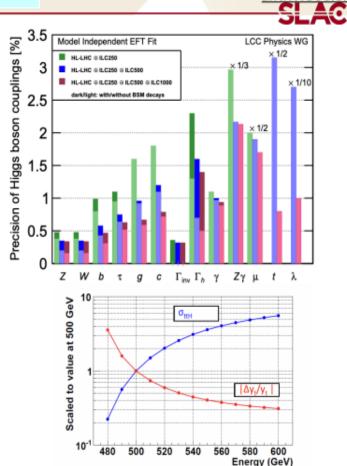

- DEV(γ/g) can be as large as ~ +4% for large T_{U33} !

<u>Higgs couplings at future colliders</u>

Higgs coupling precision in % at future colliders

arXiv:1910.11775,arXiv:1905.03764 CERN-LPCC-2018-04

- Future colliders under consideration will improve with respect to the HL-LHC the understanding of the Higgs boson couplings - 1-5%
 - Coupling to charm quark could be measured with an accuracy of ~1% in future e+emachines
 - Couplings to μ/γ/Zγ benefit the most from the large dataset available at HL-LHC
 - At low energy top-Higgs coupling is not accessible at future lepton colliders



<u>Higgs couplings at future colliders</u>

Higgs coupling precision in % for ILC

	ILC250		ILC500		ILC1000	
coupling	full	no BSM	full	no BSM	full	no BSM
hZZ	0.49	0.38	0.35	0.20	0.34	0.16
hWW	0.48	0.38	0.35	0.20	0.34	0.16
hbb	0.99	0.80	0.58	0.43	0.47	0.31
h au au	1.1	0.95	0.75	0.63	0.63	0.52
hgg	1.6	1.6	0.96	0.91	0.67	0.59
hcc	1.8	1.7	1.2	1.1	0.79	0.72
$h\gamma\gamma$	1.1	1.0	1.0	0.96	0.94	0.89
$h\gamma Z$	8.9	8.9	6.5	6.5	6.4	6.4
$h\mu\mu$	4.0	4.0	3.8	3.7	3.4	3.4
htt	_	_	6.3	6.3	1.0	1.0
hhh	—		20	20	10	10
Γ_{tot}	2.3	1.3	1.6	0.70	1.4	0.50
Γ_{inv}	0.36	—	0.32	—	0.32	_

Note C³ would run at 550 GeV, a factor 2 improvement to the top-Yukawa coupling (*)

arXiv:2203.07622

arXiv:1908.11299 arXiv:1506.07830

DEV error - coupling error relation

 $\Delta DEV(h \rightarrow XX) = 2 \, \delta g(hXX)$

 $\delta g(hXX) = [Expected relative error of coupling g(hXX)]$

 $\Delta DEV(h \rightarrow XX) = [Expected absolute error of deviation$ $DEV(h \rightarrow XX)]$