

Heavy-Flavor Tagging at the LHC John Alison

Carnegie Mellon University

Introduction

Heavy Flavor tagging critical element of physics program at LHC Higgs / Top / Many BSM searches

Challenging, relies on state-of-the-art Machine Learning

Tagging calibration and uncertainties often leading systematics

Outline:

- Heavy Flavor tagging at the LHC
- Recent highlights of Heavy Flavor tagging in Analysis
- Focus on recent developments in calibration.

<u>CMS</u>: Calibration Method for charm and b-jet identification <u>ATLAS</u>: Measurement of charm \rightarrow b fake rate

HF Tagging in CMS

Evolution of Heavy Flavor tagging in Run 2 <u>Theme</u>: *Deeper, fancier networks with lower-level inputs*

DeepJet:

HF Tagging in CMS

Carnegie Mellon

HF Tagging in CMS

Carnegie Mellon

Carnegie Mellon

Use DeepJet outputs to define separate charm classifiers:

$$CvL = \frac{P(c)}{P(c) + P(udsg)}$$
 $CvB = \frac{P(c)}{P(c) + P(b)}$

$$CvL = \frac{P(c)}{P(c) + P(udsg)}$$

$$CvB = \frac{P(c)}{P(c) + P(b)}$$

HF Tagging at the LHC

Similar story for ATLAS (details in backup)

ATLAS-CMS Flavour Tagging Workshop (Link)

Recent emphasis has been on

- More sophisticated Machine Learning Algorithms Graph Networks / Transformers / ...
- Increasingly precise calibration

Measure ɛ/fake rates in data (fixed working points)

- "Deep Calibration"

Calibrate full shape of classifier output

- Boosted/High-pT b/c tagging
- Improving b-tagging in trigger Reduce CPU footprint / Improve offline-online consistency

HF Tagging at the LHC

Similar story for ATLAS (details in backup)

ATLAS-CMS Flavour Tagging Workshop (Link)

Recent emphasis has been on

- More sophisticated Machine Learning Algorithms Graph Networks / Transformers / ...
- Increasingly precise calibration

Measure ɛ/fake rates in data (fixed working points)

- "Deep Calibration"

- Calibrate full shape of classifier output
- Boosted/High-pT b/c tagging
- Improving b-tagging in trigger Reduce CPU footprint / Improve offline-online consistency

CMS: Charm-Jet Calibration Carnegie University

BIXIV > hep-ex > arXiv:2111.03027	Beardhan Help Adv				
High Energy Physics – Experiment					
(Submitted on 4 Nov 2021 (v1), last revised 21 Mar 2022 (this version, v2)) A new calibration method for charm jet identification validated with proton-proton collision events at $\sqrt{s} = 13$ TeV					
CMS Collaboration	https://arxiv.org/abs/2111.0	03027			

Efficiencies measured double differential in CvL and CvB

- Separately for b, c and light

MC Corrections derived iteratively in 2D bins in (CvL, CvB)

- Constrained by data in three control regions (next slides)
- Iterative approach used for convergence

Adaptive 2D Binning + Interpolation

- Fix width CvL bin / CvB bins optimized on observed statistics
- Fit SF to minimize data/MC differences
- Repeat with fixed width CvB bins
- Resulting SF maps combined interpolated in full 2D plane

Control Regions

B-jet Control Region:

Target ttbar events (1L and 2L events) 1 $e/\mu + 4$ jets (2 $e/\mu + 2$ jets) Require soft- μ tagged jet to increase b-jet purity

Control Regions

B-jet Control Region:

Target ttbar events (1L and 2L events) 1 $e/\mu + 4$ jets (2 $e/\mu + 2$ jets) Require soft- μ tagged jet to increase b-jet purity

LF Control Region: $Z \rightarrow ll + inclusive jet selection$

Charm-Jet Region

Carnegie Mellon

subtracted

Jet yield, (

Data/MC

subtracted

Jet yield,

Data/MC

Carnegie Mellon

Inclusive Validation

Di-Lepton ttbar

Carnegie Mellon

Inclusive Validation

Di-Lepton ttbar

Semi-lep (Hadronic W-candidate)

Carnegie Mellon

Calibrated Performance

Carnegie Mellon

Calibrated Performance

Carnegie Mellon

Calibrated Performance

Carnegie Mellon

ATLAS: Charm-Jet mis-ID Carnegie University

$\exists \mathbf{r} \times \mathbf{i} V > hep-ex > ar X i v : 2109.10627$	Search Help Advance
High Energy Physics – Experiment	
[Submitted on 22 Sep 2021 (v1), last revised 8 Feb 2022 (this version, v2)] Measurement of the c -jet mistagging efficiency in $t\bar{t}$ events using pp colored at LAS dotestor	llision data at $\sqrt{s}=13$ TeV collected with the
ATLAS Collaboration	https://arxiv.org/abs/2109.10627

- Analysis to measure the ε with which c-jets are mistagged as bjets
- Select semi-leptonic ttbar. Large ($\sim 30\%$) W \rightarrow cs BR
- Kinematic likelihood: optimizes assignment of jets to decay products
- b-tagging discriminant compared to data (*differential in jet pT*)
- Advantage: measures inclusive c-decays

ATLAS: Charm-Jet mis-ID Carnegie University

CMS

ATLAS: Charm-Jet mis-ID Carnegie University

Data/Pred.

Data/Pred.

Conclusions

- Heavy flavor tagging a key component of the LHC physics program
- <u>ATLAS-CMS Flavour Tagging Workshop</u> comprehensive picture
- Charm tagging coming into its own in physics analyses
- Precise and differential measurements of tagging performance Both ε and fake rates, separated by jet flavor
- <u>Future</u>:
 - Deeper, more sophisticated taggers
 - Improvements in training to mitigate Data/MC differences
 - Better precision and more differential calibrations

2020, April 21st

Andrea Coccaro

High-level tagger

<u>Basic principle</u>: classified training with labels from MC; output then corrected with data-to-simulation scale factors

Different high-level taggers recommended over time

- MV2 is a BDT-based algorithm, the workhorse for years
- DL1 is a more recent ML-based algorithm
- DL1r is the most recent evolution with improved architecture and inclusion of RNN inputs
- Training for a long time on tt events, now on tt events up to 250 GeV and flat-mass Z' beyond 250 GeV

$$D_{\text{DL1}} = \ln \left(\frac{p_b}{f_c \cdot p_c + (1 - f_c) \cdot p_{\text{light}}} \right)$$

CMS: Charm-Jet Calibration Carnegie University

ATLAS: Charm-Jet mis-ID Carnegie University

Table 2: The contributions to the *c*-jet pseudo-continuous mistagging efficiency scale factor systematic uncertainties for particle-flow jets. Listed are the uncertainties related to the $t\bar{t}$ modelling, the jets and $E_{\rm T}^{\rm miss}$, the light-flavour jet scale factor, the *b*-jet scale factor, and all other sources.

		Systematic uncertainty in SF				
Tagging interval	Jet <i>p</i> _T range [GeV]	$t\bar{t}$ mod.	$\text{Jet}/E_{\text{T}}^{\text{miss}}$	Light tag	b-tag	Other
85%-100%	20–40	5.3%	0.8%	2.3%	_	0.1%
85%-100%	40-65	2.1%	0.3%	1.2%	_	_
85%-100%	65-140	1.9%	0.2%	0.9%	_	0.1%
85%-100%	140–250	2.0%	0.4%	0.9%	_	0.1%
77%-85%	20–40	8.3%	3.1%	8.2%	_	0.3%
77%-85%	40–65	3.0%	1.0%	3.5%	_	0.1%
77%-85%	65-140	3.2%	0.5%	2.4%	_	0.2%
77%-85%	140-250	3.9%	0.9%	2.3%	_	0.3%
70%-77%	20–40	9.7%	1.2%	2.5%	_	0.4%
70%-77%	40–65	4.7%	0.8%	1.1%	_	0.1%
70%-77%	65-140	3.7%	0.4%	0.8%	_	0.2%
70%-77%	140–250	3.1%	1.0%	0.9%	_	0.1%
60%-70%	20–40	11%	0.8%	1.6%	_	0.4%
60%-70%	40–65	4.7%	0.6%	0.9%	_	0.1%
60%-70%	65-140	4.4%	0.4%	0.6%	_	0.2%
60%-70%	140-250	2.6%	1.4%	0.8%	0.2%	0.2%
0%-60%	20–40	17%	3.1%	0.8%	0.2%	1.5%
0%-60%	40–65	11%	3.7%	0.4%	0.1%	0.9%
0%-60%	65-140	8.7%	3.0%	0.2%	_	0.7%
0%-60%	140–250	9.7%	7.1%	0.7%	_	1.7%