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Outline: 
  - Heavy Flavor tagging at the LHC 
  - Recent highlights of Heavy Flavor tagging in Analysis 
  - Focus on recent developments in calibration.  
       CMS:     Calibration Method for charm and b-jet identification 
       ATLAS: Measurement of charm → b fake rate 
  

Introduction
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Heavy Flavor tagging critical element of physics program at LHC 
    Higgs / Top / Many BSM searches 

Challenging, relies on state-of-the-art Machine Learning 

Tagging calibration and uncertainties often leading systematics



Evolution of Heavy Flavor tagging in Run 2 
   Theme: Deeper, fancier networks with lower-level inputs

HF Tagging in CMS
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Charm Tagging

• Discriminate c simultaneously against b and udsg

Spandan Mondal Charm tagger calibration 3

“DeepJet”

Trained on MC simulated jets

Two scores for each jet:

. Tagger inputs in ATLAS and CMS 13
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Text

Use DeepJet outputs to define separate charm classifiers:
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Charm Jet Tagging
Challenging, background from both sides:

4.3 Secondary vertex reconstruction and variables 9

 [GeV]
T

Jet p
0 100 200 300 400 500 600Av

er
ag

e 
tra

ck
 m

ul
tip

lic
ity

 / 
60

 G
eV

10

20

30

40

50 b jets (all) b jets (sel.)
c jets (all) c jets (sel.)
udsg jets (all) udsg jets (sel.)

 + jetstt
 > 20 GeV

T
p

13 TeV, 2016

CMS
Simulation

|ηJet |
0 0.5 1 1.5 2 2.5

Av
er

ag
e 

tra
ck

 m
ul

tip
lic

ity
 / 

0.
24

 u
ni

ts

5

10

15

20

25

30 b jets (all) b jets (sel.)
c jets (all) c jets (sel.)
udsg jets (all) udsg jets (sel.)

 + jetstt
 > 20 GeV

T
p

13 TeV, 2016

CMS
Simulation

Figure 4: Average track multiplicity as a function of the jet pT (left) and |h| (right) for jets of
different flavours in tt events before (open symbols) and after (filled symbols) applying the
track selection requirements.
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Figure 5: Distribution of the 3D impact parameter value (upper left) and significance (upper
right) for tracks associated with jets of different flavours in tt events. Distribution of the 2D
impact parameter significance for the track with the highest (lower left) and second-highest
(lower right) 2D impact parameter significance for jets of different flavours in tt events. The
distributions are normalized to unit area. The first and last bin include the underflow and
overflow entries, respectively.
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SV 2D flight distance significance
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Figure 6: Distribution of the corrected secondary vertex mass (left) and of the secondary vertex
2D flight distance significance (right) for jets containing an IVF secondary vertex. The distribu-
tions are shown for jets of different flavours in tt events and are normalized to unit area. The
last bin includes the overflow entries.

of only those associated with the jet and passing the selection requirements. The right panel in
Fig. 7 shows the correlation between the corrected mass of the secondary vertices obtained with
the two approaches. From the correlation it is clear that the same secondary vertex is found in
most cases. Since the efficiency of the IVF algorithm is higher, IVF secondary vertices are used
to compute the secondary vertex variables for the heavy-flavour jet identification algorithms.
AVR secondary vertices are only used in one of the b jet identification algorithms discussed in
Section 5.
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Figure 7: Distribution of the number of secondary vertices in b jets for the two vertex finding
algorithms described in the text (left). The distributions are normalized to unit area. Correla-
tion between the corrected secondary vertex mass for the vertices obtained with the two vertex
finding algorithms (right). Both panels show jets in tt events.

4.4 Soft-lepton variables

Although an electron or muon is present in only 20% (10%) of the b (c) jets, the properties of
this low-energy nonisolated “soft lepton” (SL) permit the selection of a pure sample of heavy-
flavour jets. Therefore, some of the heavy-flavour taggers use the properties of these soft lep-
tons. Soft muons are defined as particles clustered in the jet passing the loose muon identifica-

CvL =
P(c)

P(c) + P(udsg)
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CvB =
P(c)

P(c) + P(b)
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Charm Jet Tagging
Challenging, background from both sides:
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Figure 4: Average track multiplicity as a function of the jet pT (left) and |h| (right) for jets of
different flavours in tt events before (open symbols) and after (filled symbols) applying the
track selection requirements.
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Figure 5: Distribution of the 3D impact parameter value (upper left) and significance (upper
right) for tracks associated with jets of different flavours in tt events. Distribution of the 2D
impact parameter significance for the track with the highest (lower left) and second-highest
(lower right) 2D impact parameter significance for jets of different flavours in tt events. The
distributions are normalized to unit area. The first and last bin include the underflow and
overflow entries, respectively.
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Figure 6: Distribution of the corrected secondary vertex mass (left) and of the secondary vertex
2D flight distance significance (right) for jets containing an IVF secondary vertex. The distribu-
tions are shown for jets of different flavours in tt events and are normalized to unit area. The
last bin includes the overflow entries.

of only those associated with the jet and passing the selection requirements. The right panel in
Fig. 7 shows the correlation between the corrected mass of the secondary vertices obtained with
the two approaches. From the correlation it is clear that the same secondary vertex is found in
most cases. Since the efficiency of the IVF algorithm is higher, IVF secondary vertices are used
to compute the secondary vertex variables for the heavy-flavour jet identification algorithms.
AVR secondary vertices are only used in one of the b jet identification algorithms discussed in
Section 5.
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Figure 7: Distribution of the number of secondary vertices in b jets for the two vertex finding
algorithms described in the text (left). The distributions are normalized to unit area. Correla-
tion between the corrected secondary vertex mass for the vertices obtained with the two vertex
finding algorithms (right). Both panels show jets in tt events.

4.4 Soft-lepton variables

Although an electron or muon is present in only 20% (10%) of the b (c) jets, the properties of
this low-energy nonisolated “soft lepton” (SL) permit the selection of a pure sample of heavy-
flavour jets. Therefore, some of the heavy-flavour taggers use the properties of these soft lep-
tons. Soft muons are defined as particles clustered in the jet passing the loose muon identifica-

CvL =
P(c)

P(c) + P(udsg)
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layers with 100 nodes in each layer. It takes as input a set of 66 reconstructed observables re-
lated to the charged-particle tracks and secondary vertices that are assigned to a given jet, and
outputs four probabilities, P(b), P(bb), P(c) and P(udsg), that denote the probability of a jet
to originate from one b quark, two b quarks merged into the same jet, one or more c quarks
or a light-flavour quark or gluon, respectively. The DeepJet algorithm uses an architecture
composed of subsequent convolutional, recurrent and fully connected hidden layers. Its input
is composed of a set of up to 613 observables related to charged and neutral PF candidates
(without a priori selection criteria and without explicitly classifying charged PF candidates as
charged hadron or leptons, and neutral PF candidates as photons or neutral hadrons) as well
as the SVs that are assigned to the jet. Apart from the fact that DeepJet exhibits a higher-
dimensional input space and a more complex architecture, it further subdivides the output
classes into additional categories. In addition to the DeepCSV output categories, P(blep) is
added to identify leptonic b hadron decays and P(udsg) is split further into P(uds) and P(g)
with the goal of separately identifying jets originating from light quarks and gluons, respec-
tively. More detailed information on the inputs, architecture, and training of these algorithms
can be found in Refs. [2, 4, 5].

Table 1: Summary of the heavy-flavour tagging definitions for both b and c tagging using the
DeepCSV and DeepJet taggers. P(a) represents the probability of having an a-type jet (see text).

Tagger BvsC/L CvsB CvsL
DeepCSV P(b)+P(bb) P(c)

P(c)+P(b)+P(bb)
P(c)

P(c)+P(udsg)

DeepJet P(b)+P(bb)+P(blep) P(c)
P(c)+P(b)+P(bb)+P(blep)

P(c)
P(c)+P(uds)+P(g)
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Figure 1: Unit-normalised distributions of the CvsL (left) and CvsB (right) discriminators for
the DeepCSV (dashed) and DeepJet (solid) algorithms using jets from simulated hadronic tt
events with pT > 20 GeV and |h| < 2.5. The distributions are shown for b (red), c (green) and
light-flavour jets (blue) separately.

These output probabilities can be appropriately combined to define a set of b and c tagging
discriminators as summarised in Table 1. For b jet identification, a discriminant is defined to
distinguish b jets from either c or light-flavour jets using one single discriminator (BvsC/L). For
c jet identification, two distinct discriminators are defined as the ratios in the second and third
columns in Table 1. The normalised distributions of these discriminators for both algorithms
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Figure 1: Unit-normalised distributions of the CvsL (left) and CvsB (right) discriminators for
the DeepCSV (dashed) and DeepJet (solid) algorithms using jets from simulated hadronic tt
events with pT > 20 GeV and |h| < 2.5. The distributions are shown for b (red), c (green) and
light-flavour jets (blue) separately.

These output probabilities can be appropriately combined to define a set of b and c tagging
discriminators as summarised in Table 1. For b jet identification, a discriminant is defined to
distinguish b jets from either c or light-flavour jets using one single discriminator (BvsC/L). For
c jet identification, two distinct discriminators are defined as the ratios in the second and third
columns in Table 1. The normalised distributions of these discriminators for both algorithms

CvB =
P(c)

P(c) + P(b)
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Figure 4: Average track multiplicity as a function of the jet pT (left) and |h| (right) for jets of
different flavours in tt events before (open symbols) and after (filled symbols) applying the
track selection requirements.
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Figure 5: Distribution of the 3D impact parameter value (upper left) and significance (upper
right) for tracks associated with jets of different flavours in tt events. Distribution of the 2D
impact parameter significance for the track with the highest (lower left) and second-highest
(lower right) 2D impact parameter significance for jets of different flavours in tt events. The
distributions are normalized to unit area. The first and last bin include the underflow and
overflow entries, respectively.
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Figure 6: Distribution of the corrected secondary vertex mass (left) and of the secondary vertex
2D flight distance significance (right) for jets containing an IVF secondary vertex. The distribu-
tions are shown for jets of different flavours in tt events and are normalized to unit area. The
last bin includes the overflow entries.

of only those associated with the jet and passing the selection requirements. The right panel in
Fig. 7 shows the correlation between the corrected mass of the secondary vertices obtained with
the two approaches. From the correlation it is clear that the same secondary vertex is found in
most cases. Since the efficiency of the IVF algorithm is higher, IVF secondary vertices are used
to compute the secondary vertex variables for the heavy-flavour jet identification algorithms.
AVR secondary vertices are only used in one of the b jet identification algorithms discussed in
Section 5.
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Figure 7: Distribution of the number of secondary vertices in b jets for the two vertex finding
algorithms described in the text (left). The distributions are normalized to unit area. Correla-
tion between the corrected secondary vertex mass for the vertices obtained with the two vertex
finding algorithms (right). Both panels show jets in tt events.

4.4 Soft-lepton variables

Although an electron or muon is present in only 20% (10%) of the b (c) jets, the properties of
this low-energy nonisolated “soft lepton” (SL) permit the selection of a pure sample of heavy-
flavour jets. Therefore, some of the heavy-flavour taggers use the properties of these soft lep-
tons. Soft muons are defined as particles clustered in the jet passing the loose muon identifica-

CvL =
P(c)

P(c) + P(udsg)
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layers with 100 nodes in each layer. It takes as input a set of 66 reconstructed observables re-
lated to the charged-particle tracks and secondary vertices that are assigned to a given jet, and
outputs four probabilities, P(b), P(bb), P(c) and P(udsg), that denote the probability of a jet
to originate from one b quark, two b quarks merged into the same jet, one or more c quarks
or a light-flavour quark or gluon, respectively. The DeepJet algorithm uses an architecture
composed of subsequent convolutional, recurrent and fully connected hidden layers. Its input
is composed of a set of up to 613 observables related to charged and neutral PF candidates
(without a priori selection criteria and without explicitly classifying charged PF candidates as
charged hadron or leptons, and neutral PF candidates as photons or neutral hadrons) as well
as the SVs that are assigned to the jet. Apart from the fact that DeepJet exhibits a higher-
dimensional input space and a more complex architecture, it further subdivides the output
classes into additional categories. In addition to the DeepCSV output categories, P(blep) is
added to identify leptonic b hadron decays and P(udsg) is split further into P(uds) and P(g)
with the goal of separately identifying jets originating from light quarks and gluons, respec-
tively. More detailed information on the inputs, architecture, and training of these algorithms
can be found in Refs. [2, 4, 5].

Table 1: Summary of the heavy-flavour tagging definitions for both b and c tagging using the
DeepCSV and DeepJet taggers. P(a) represents the probability of having an a-type jet (see text).
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Figure 1: Unit-normalised distributions of the CvsL (left) and CvsB (right) discriminators for
the DeepCSV (dashed) and DeepJet (solid) algorithms using jets from simulated hadronic tt
events with pT > 20 GeV and |h| < 2.5. The distributions are shown for b (red), c (green) and
light-flavour jets (blue) separately.

These output probabilities can be appropriately combined to define a set of b and c tagging
discriminators as summarised in Table 1. For b jet identification, a discriminant is defined to
distinguish b jets from either c or light-flavour jets using one single discriminator (BvsC/L). For
c jet identification, two distinct discriminators are defined as the ratios in the second and third
columns in Table 1. The normalised distributions of these discriminators for both algorithms
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These output probabilities can be appropriately combined to define a set of b and c tagging
discriminators as summarised in Table 1. For b jet identification, a discriminant is defined to
distinguish b jets from either c or light-flavour jets using one single discriminator (BvsC/L). For
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columns in Table 1. The normalised distributions of these discriminators for both algorithms
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Inherently 2-dimensional problem.

8

10−2 10−1 100

b jet mistag rate

10−2

10−1

100

Li
gh

t-f
la

vo
ur

 je
t m

is
ta

g 
ra

te
2017 (13 TeV)CMSSimulation

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t ̄t jets pT >  20 GeV
c-tagging efficiency

DeepCSV
DeepJet

Figure 3: Two-dimensional ROC contours showing the c tagging efficiency as simultaneous
functions of b jet and light-flavour jet mistagging rates for DeepCSV (blue lines) and DeepJet
(red lines) algorithms using jets with pT > 20 GeV and |h| < 2.5, from simulated hadronically
decaying tt events. Each line represents points in the plane that correspond to a fixed value of
the c tagging efficiency, which is shown as a number at the centre of each line.

No such preselection criteria are used in the DeepJet algorithm, which instead takes as input
the entire collection of PF candidates associated with a given jet. Therefore, no default values
are expected to appear in the output probabilities of the DeepJet algorithm. Nevertheless, be-
cause of the definition of the CvsL and CvsB discriminators shown in Table 1, an undefined
discriminator value can appear if the denominator becomes zero. This situation is observed
when the b jet probability, P(b)+P(bb)+P(blep), is evaluated to be exactly 1 by the DeepJet al-
gorithm, resulting by construction in an output value of 0 for all other output probabilities.
Consequently, this appears almost exclusively for b jets. Whenever such a situation appears
for a given jet, its c tagging discriminator values, CvsL and CvsB, are evaluated to be unde-
fined and 0, respectively, and hence constitute a special category of jets separated from the
continuous jet distribution in the 2D CvsL-CvsB plane. For simpler representation, both CvsL
and CvsB values of these jets are defaulted to a value of �1 in this paper.

5.2 Mismodelling of the simulated c tagging discriminators

The need for calibrating the heavy-flavour tagging discriminants arises from possible mis-
modelling of the simulated inputs. Important discriminating properties such as the track dis-
placement or the SV displacement are not very well modelled in simulation and are subject
to changes in the detector alignment. As already evident from other heavy-flavour calibra-
tion methods [2], the performance of the heavy-flavour tagging algorithms is overestimated in
the simulation, resulting in higher simulated b and c tagging efficiencies and lower misiden-
tification probabilities compared with those observed in the data. Rather than correcting the
efficiency of a selection in the discriminator, the full simulated differential shape of that dis-
criminator can be calibrated to match the shape observed in data. Such a strategy has been
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Efficiencies measured double differential in CvL and CvB 
   - Separately for b, c and light 

MC Corrections derived iteratively in 2D bins in (CvL , CvB)  
   - Constrained by data in three control regions (next slides) 
   - Iterative approach used for convergence 

Adaptive 2D Binning + Interpolation 
   - Fix width CvL bin / CvB bins optimized on observed statistics 
   - Fit SF to minimize data/MC differences   
   - Repeat with fixed width CvB bins 
   - Resulting SF maps combined interpolated in full 2D plane 
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B-jet Control Region: 
 Target ttbar events (1L and 2L events) 
  1 e/µ + 4 jets (2 e/µ + 2 jets) 
 Require soft-µ tagged jet to increase b-jet purity

LF Control Region: 
  Z→ll + inclusive jet selection
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5.1 The c tagging algorithms 7

are shown in Fig. 1 for jets with pT > 20 GeV and |h| < 2.5 from simulated hadronically
decaying tt events. The performance of these algorithms can be assessed by evaluating the
selection efficiency for c jets as a function of the misidentification rate for either b or light-
flavour jets for different selection thresholds on the discriminator values. These result in a so-
called receiver operating characteristic (ROC) curve which is shown in Fig. 2. It can be seen that
the DeepJet algorithm has a lower mistagging efficiency than the DeepCSV algorithm in both
CvsL and CvsB discrimination. Furthermore, the selection efficiency for c jets can be evaluated
as a simultaneous function of b and light-flavour jet misidentification rates, which produces a
two-dimensional (2D) ROC contour plot as shown in Fig. 3. This plot shows that the DeepJet
algorithm outperforms the DeepCSV algorithm in simultaneous CvsL and CvsB discrimination
over the entire 2D phase space, as well. The DeepCSV algorithm itself has already shown a
significantly improved performance over the original c tagging algorithm, which was based
on a combination of two BDTs [2], demonstrating the significant advancements that have been
made in heavy-flavour identification over the last five years.

The 2D (normalised) distributions of the CvsL and CvsB discriminators of both algorithms are
shown in Fig. 4 for different jet flavours. In this 2D phase space spanned by the CvsL and
CvsB discriminators, light-flavour jets are situated almost exclusively in the upper left corner,
whereas c jets have a significant fraction along the right edge, and b jets are distributed largely
towards the lower right corner, as expected.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Tagging efficiency (c)

10−3

10−2

10−1

100

M
is

ta
gg

in
g 

ra
te

 (u
ds

g)

2017 (13 TeV)CMSSimulation

t ̄t jets pT >  20 GeV
DeepCSV - CvsL
DeepJet - CvsL

Figure 2: The ROC curves showing the individual performance of the CvsL (left) and CvsB
(right) discriminators for the DeepCSV (blue) and DeepJet (red) algorithms using jets from
simulated hadronic tt events with pT > 20 GeV and |h| < 2.5.

An a priori track selection is applied to define the collection of tracks considered as input to the
DeepCSV algorithm. This selection is optimised to identify tracks from b and c hadrons, while
rejecting tracks from pileup interactions and poorly reconstructed tracks that do not match any
genuine particle passing through the detector. It is therefore possible that a given jet has no
tracks that pass this preselection and therefore no information is present to calculate a heavy-
flavour tagging discriminant. These jets are assigned a default output value of �1. Given the
known differences in track reconstruction efficiency and the poorly reconstructed track rate
between the simulation and collision data, it is important to calibrate the rate of jets with such
default discriminator values.
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are shown in Fig. 1 for jets with pT > 20 GeV and |h| < 2.5 from simulated hadronically
decaying tt events. The performance of these algorithms can be assessed by evaluating the
selection efficiency for c jets as a function of the misidentification rate for either b or light-
flavour jets for different selection thresholds on the discriminator values. These result in a so-
called receiver operating characteristic (ROC) curve which is shown in Fig. 2. It can be seen that
the DeepJet algorithm has a lower mistagging efficiency than the DeepCSV algorithm in both
CvsL and CvsB discrimination. Furthermore, the selection efficiency for c jets can be evaluated
as a simultaneous function of b and light-flavour jet misidentification rates, which produces a
two-dimensional (2D) ROC contour plot as shown in Fig. 3. This plot shows that the DeepJet
algorithm outperforms the DeepCSV algorithm in simultaneous CvsL and CvsB discrimination
over the entire 2D phase space, as well. The DeepCSV algorithm itself has already shown a
significantly improved performance over the original c tagging algorithm, which was based
on a combination of two BDTs [2], demonstrating the significant advancements that have been
made in heavy-flavour identification over the last five years.

The 2D (normalised) distributions of the CvsL and CvsB discriminators of both algorithms are
shown in Fig. 4 for different jet flavours. In this 2D phase space spanned by the CvsL and
CvsB discriminators, light-flavour jets are situated almost exclusively in the upper left corner,
whereas c jets have a significant fraction along the right edge, and b jets are distributed largely
towards the lower right corner, as expected.
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Figure 2: The ROC curves showing the individual performance of the CvsL (left) and CvsB
(right) discriminators for the DeepCSV (blue) and DeepJet (red) algorithms using jets from
simulated hadronic tt events with pT > 20 GeV and |h| < 2.5.

An a priori track selection is applied to define the collection of tracks considered as input to the
DeepCSV algorithm. This selection is optimised to identify tracks from b and c hadrons, while
rejecting tracks from pileup interactions and poorly reconstructed tracks that do not match any
genuine particle passing through the detector. It is therefore possible that a given jet has no
tracks that pass this preselection and therefore no information is present to calculate a heavy-
flavour tagging discriminant. These jets are assigned a default output value of �1. Given the
known differences in track reconstruction efficiency and the poorly reconstructed track rate
between the simulation and collision data, it is important to calibrate the rate of jets with such
default discriminator values.
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Figure 14: The ROC curves showing the individual performance of the CvsL (left) and CvsB
(right) discriminators for the DeepCSV (blue) and DeepJet (red) algorithms for simulated jets
(the dashed lines) and the estimation of the same for jets in data (the solid lines). The solid
uncertainty bands around the solid lines represent the statistical uncertainties in the SFs propa-
gated to the ROCs, and the hatched semi-transparent bands represent statistical and systematic
uncertainties in the SFs propagated to the ROCs and added in quadrature.

CvsL and CvsB discrimination along with their variations because of statistical and systematic
uncertainties are shown in Fig. 14. In a similar fashion, the adjusted c tagging efficiencies, as
functions of the adjusted b and light-flavour jet misidentification rates are shown in Fig. 15.

Individual contributions from each source of uncertainty are also quantified by the change in
the area under the ROC curve from that of the central ROC curve. The relative contributions, in-
cluding that of statistical uncertainties, evaluated using the ROC curve variations as described
here are presented graphically in Fig. 16. The approach of presenting uncertainties as a func-
tion of discriminator values in Figs. 12 and 13 is essentially different from this interpretation,
because the former disregards the relative abundance of jets at different discriminator values,
whereas the latter includes the absolute change in the jet yields in different parts of the phase
space and could therefore be more representative of the corresponding effect in a physics anal-
ysis. In this approach, uncertainties in the factorisation scale are the dominant contributions to
the overall uncertainties in CvsL discrimination, whereas uncertainties in b fragmentation and
in the ISR and FSR in the PS are among the highest contributors to the uncertainties in the CvsB
discriminator, owing to their large contributions to the b jet SFs.

10 Validation

10.1 Closure test

A closure test is performed by applying the derived shape calibration SFs to the CvsL and CvsB
distributions of the same jet selections for which the SFs were derived. The effect of applying
the DeepCSV (DeepJet) SFs on the DeepCSV (DeepJet) c tagger distributions is shown in Fig. 17
(18). A good agreement between the c tagging discriminator distributions of simulated jets and
those of jets in data establishes the closure of this method.
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(right) discriminators for the DeepCSV (blue) and DeepJet (red) algorithms for simulated jets
(the dashed lines) and the estimation of the same for jets in data (the solid lines). The solid
uncertainty bands around the solid lines represent the statistical uncertainties in the SFs propa-
gated to the ROCs, and the hatched semi-transparent bands represent statistical and systematic
uncertainties in the SFs propagated to the ROCs and added in quadrature.

CvsL and CvsB discrimination along with their variations because of statistical and systematic
uncertainties are shown in Fig. 14. In a similar fashion, the adjusted c tagging efficiencies, as
functions of the adjusted b and light-flavour jet misidentification rates are shown in Fig. 15.

Individual contributions from each source of uncertainty are also quantified by the change in
the area under the ROC curve from that of the central ROC curve. The relative contributions, in-
cluding that of statistical uncertainties, evaluated using the ROC curve variations as described
here are presented graphically in Fig. 16. The approach of presenting uncertainties as a func-
tion of discriminator values in Figs. 12 and 13 is essentially different from this interpretation,
because the former disregards the relative abundance of jets at different discriminator values,
whereas the latter includes the absolute change in the jet yields in different parts of the phase
space and could therefore be more representative of the corresponding effect in a physics anal-
ysis. In this approach, uncertainties in the factorisation scale are the dominant contributions to
the overall uncertainties in CvsL discrimination, whereas uncertainties in b fragmentation and
in the ISR and FSR in the PS are among the highest contributors to the uncertainties in the CvsB
discriminator, owing to their large contributions to the b jet SFs.

10 Validation

10.1 Closure test

A closure test is performed by applying the derived shape calibration SFs to the CvsL and CvsB
distributions of the same jet selections for which the SFs were derived. The effect of applying
the DeepCSV (DeepJet) SFs on the DeepCSV (DeepJet) c tagger distributions is shown in Fig. 17
(18). A good agreement between the c tagging discriminator distributions of simulated jets and
those of jets in data establishes the closure of this method.
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are shown in Fig. 1 for jets with pT > 20 GeV and |h| < 2.5 from simulated hadronically
decaying tt events. The performance of these algorithms can be assessed by evaluating the
selection efficiency for c jets as a function of the misidentification rate for either b or light-
flavour jets for different selection thresholds on the discriminator values. These result in a so-
called receiver operating characteristic (ROC) curve which is shown in Fig. 2. It can be seen that
the DeepJet algorithm has a lower mistagging efficiency than the DeepCSV algorithm in both
CvsL and CvsB discrimination. Furthermore, the selection efficiency for c jets can be evaluated
as a simultaneous function of b and light-flavour jet misidentification rates, which produces a
two-dimensional (2D) ROC contour plot as shown in Fig. 3. This plot shows that the DeepJet
algorithm outperforms the DeepCSV algorithm in simultaneous CvsL and CvsB discrimination
over the entire 2D phase space, as well. The DeepCSV algorithm itself has already shown a
significantly improved performance over the original c tagging algorithm, which was based
on a combination of two BDTs [2], demonstrating the significant advancements that have been
made in heavy-flavour identification over the last five years.

The 2D (normalised) distributions of the CvsL and CvsB discriminators of both algorithms are
shown in Fig. 4 for different jet flavours. In this 2D phase space spanned by the CvsL and
CvsB discriminators, light-flavour jets are situated almost exclusively in the upper left corner,
whereas c jets have a significant fraction along the right edge, and b jets are distributed largely
towards the lower right corner, as expected.
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Figure 2: The ROC curves showing the individual performance of the CvsL (left) and CvsB
(right) discriminators for the DeepCSV (blue) and DeepJet (red) algorithms using jets from
simulated hadronic tt events with pT > 20 GeV and |h| < 2.5.

An a priori track selection is applied to define the collection of tracks considered as input to the
DeepCSV algorithm. This selection is optimised to identify tracks from b and c hadrons, while
rejecting tracks from pileup interactions and poorly reconstructed tracks that do not match any
genuine particle passing through the detector. It is therefore possible that a given jet has no
tracks that pass this preselection and therefore no information is present to calculate a heavy-
flavour tagging discriminant. These jets are assigned a default output value of �1. Given the
known differences in track reconstruction efficiency and the poorly reconstructed track rate
between the simulation and collision data, it is important to calibrate the rate of jets with such
default discriminator values.
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Figure 14: The ROC curves showing the individual performance of the CvsL (left) and CvsB
(right) discriminators for the DeepCSV (blue) and DeepJet (red) algorithms for simulated jets
(the dashed lines) and the estimation of the same for jets in data (the solid lines). The solid
uncertainty bands around the solid lines represent the statistical uncertainties in the SFs propa-
gated to the ROCs, and the hatched semi-transparent bands represent statistical and systematic
uncertainties in the SFs propagated to the ROCs and added in quadrature.

CvsL and CvsB discrimination along with their variations because of statistical and systematic
uncertainties are shown in Fig. 14. In a similar fashion, the adjusted c tagging efficiencies, as
functions of the adjusted b and light-flavour jet misidentification rates are shown in Fig. 15.

Individual contributions from each source of uncertainty are also quantified by the change in
the area under the ROC curve from that of the central ROC curve. The relative contributions, in-
cluding that of statistical uncertainties, evaluated using the ROC curve variations as described
here are presented graphically in Fig. 16. The approach of presenting uncertainties as a func-
tion of discriminator values in Figs. 12 and 13 is essentially different from this interpretation,
because the former disregards the relative abundance of jets at different discriminator values,
whereas the latter includes the absolute change in the jet yields in different parts of the phase
space and could therefore be more representative of the corresponding effect in a physics anal-
ysis. In this approach, uncertainties in the factorisation scale are the dominant contributions to
the overall uncertainties in CvsL discrimination, whereas uncertainties in b fragmentation and
in the ISR and FSR in the PS are among the highest contributors to the uncertainties in the CvsB
discriminator, owing to their large contributions to the b jet SFs.

10 Validation

10.1 Closure test

A closure test is performed by applying the derived shape calibration SFs to the CvsL and CvsB
distributions of the same jet selections for which the SFs were derived. The effect of applying
the DeepCSV (DeepJet) SFs on the DeepCSV (DeepJet) c tagger distributions is shown in Fig. 17
(18). A good agreement between the c tagging discriminator distributions of simulated jets and
those of jets in data establishes the closure of this method.
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Figure 14: The ROC curves showing the individual performance of the CvsL (left) and CvsB
(right) discriminators for the DeepCSV (blue) and DeepJet (red) algorithms for simulated jets
(the dashed lines) and the estimation of the same for jets in data (the solid lines). The solid
uncertainty bands around the solid lines represent the statistical uncertainties in the SFs propa-
gated to the ROCs, and the hatched semi-transparent bands represent statistical and systematic
uncertainties in the SFs propagated to the ROCs and added in quadrature.

CvsL and CvsB discrimination along with their variations because of statistical and systematic
uncertainties are shown in Fig. 14. In a similar fashion, the adjusted c tagging efficiencies, as
functions of the adjusted b and light-flavour jet misidentification rates are shown in Fig. 15.

Individual contributions from each source of uncertainty are also quantified by the change in
the area under the ROC curve from that of the central ROC curve. The relative contributions, in-
cluding that of statistical uncertainties, evaluated using the ROC curve variations as described
here are presented graphically in Fig. 16. The approach of presenting uncertainties as a func-
tion of discriminator values in Figs. 12 and 13 is essentially different from this interpretation,
because the former disregards the relative abundance of jets at different discriminator values,
whereas the latter includes the absolute change in the jet yields in different parts of the phase
space and could therefore be more representative of the corresponding effect in a physics anal-
ysis. In this approach, uncertainties in the factorisation scale are the dominant contributions to
the overall uncertainties in CvsL discrimination, whereas uncertainties in b fragmentation and
in the ISR and FSR in the PS are among the highest contributors to the uncertainties in the CvsB
discriminator, owing to their large contributions to the b jet SFs.

10 Validation

10.1 Closure test

A closure test is performed by applying the derived shape calibration SFs to the CvsL and CvsB
distributions of the same jet selections for which the SFs were derived. The effect of applying
the DeepCSV (DeepJet) SFs on the DeepCSV (DeepJet) c tagger distributions is shown in Fig. 17
(18). A good agreement between the c tagging discriminator distributions of simulated jets and
those of jets in data establishes the closure of this method.

Obvious next step, train to optimize performance in data.

Calibrated Performance



- Analysis to measure the ε with which c-jets are mistagged as bjets 

- Select semi-leptonic ttbar.  Large (~30%) W→cs BR 

- Kinematic likelihood: optimizes assignment of jets to decay products 

- b-tagging discriminant compared to data (differential in jet pT) 

- Advantage: measures inclusive c-decays
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- Analysis to measure the ε with which c-jets are mistagged as bjets 

- Select semi-leptonic ttbar.  Large (~30%) W→cs BR 

- Kinematic likelihood: optimizes assignment of jets to decay products 

- b-tagging discriminant compared to data (differential in jet pT) 

- Advantage: measures inclusive c-decays
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https://arxiv.org/abs/2109.10627
tt-bar Likelihood: 
  - Inputs: MeT + jets/lepton 4-vectors (no b-tagging information) 
  - Optimizes jet assignment using invariant masses of the top and W 
  - After fit, require “top-jets” to be b-tagged. (~99% correct assignment)
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Figure 2: Distributions of (a) [, (b) ?T and (c) the DL1r discriminant for the particle-flow jets that are associated
with the , boson decay by the likelihood-based CC̄ event reconstruction algorithm (,-jets). The CC̄ simulation is
split according to the flavours of the ,-jets (;;, 2;, 1; and other). The (mis)tagging e�ciency scale factors have
not been applied to the simulation. The hashed area shows the total uncertainty, excluding the uncertainties from
the (mis)tagging e�ciency scale factors and the uncertainty on the jet ?T distribution, which is derived from the
di�erence between data and simulation. The vertical dashed lines in (c) indicate the DL1r discriminant tagging
intervals.
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Figure 2: Distributions of (a) [, (b) ?T and (c) the DL1r discriminant for the particle-flow jets that are associated
with the , boson decay by the likelihood-based CC̄ event reconstruction algorithm (,-jets). The CC̄ simulation is
split according to the flavours of the ,-jets (;;, 2;, 1; and other). The (mis)tagging e�ciency scale factors have
not been applied to the simulation. The hashed area shows the total uncertainty, excluding the uncertainties from
the (mis)tagging e�ciency scale factors and the uncertainty on the jet ?T distribution, which is derived from the
di�erence between data and simulation. The vertical dashed lines in (c) indicate the DL1r discriminant tagging
intervals.
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with the , boson decay by the likelihood-based CC̄ event reconstruction algorithm (,-jets). The CC̄ simulation is
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not been applied to the simulation. The hashed area shows the total uncertainty, excluding the uncertainties from
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Figure 4: The 2-jet pseudo-continuous mistagging e�ciencies for particle-flow jets shown as red points as a function
of tagging interval for the four jet-?T ranges. Included in the plots are the corresponding MC e�ciencies using the
P����� 8+E��G�� fragmentation model.
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Figure 3: The 2-jet pseudo-continuous mistagging e�ciency scale factors for particle-flow jets shown as a function
of jet ?T for four tagging intervals. The scale factors are shown for the P����� 8+E��G�� fragmentation model.
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- Heavy flavor tagging a key component of the LHC physics program 

- ATLAS-CMS Flavour Tagging Workshop comprehensive picture 

- Charm tagging coming into its own in physics analyses 

- Precise and differential measurements of tagging performance 
      Both ε and fake rates,  separated by jet flavor 

- Future:  
    - Deeper, more sophisticated taggers  
    - Improvements in training to mitigate Data/MC differences 
    - Better precision and more differential calibrations  

Conclusions
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https://indico.cern.ch/event/895505/timetable/?print=1&view=standard
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ATLAS Flavour Tagging, an Introduction

ATLAS+CMS Flavour Tagging Workshop

2020, April 21st

Andrea Coccaro 

High-level tagger

9

Basic principle: classified training with labels from MC; output then corrected with 
data-to-simulation scale factors

Different high-level taggers recommended over time

● MV2 is a BDT-based algorithm, the workhorse for years
● DL1 is a more recent ML-based algorithm
● DL1r is the most recent evolution with improved architecture and inclusion of 

RNN inputs
● Training for a long time on tt events, now on tt events up to 250 GeV and 

flat-mass Z' beyond 250 GeV
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10.1 Closure test 29

Figure 15: The ROC contours showing c tagging efficiencies as functions of b and light-flavour
jet misidentification rates, for the DeepCSV (left) and DeepJet (right) algorithms for simulated
jets (the dashed lines) and the estimation of the same for jets in data (the solid lines). Each line
represents points in the plane that correspond to a fixed value of the c tagging efficiency, which
is shown as a number at the centre of each line.
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Figure 16: Relative contributions of each source of uncertainty to the total uncertainty (statis-
tical + systematic) for both CvsL and CvsB discrimination and for both DeepCSV and DeepJet
taggers, quantified by the square of the change in area under ROC curves.

CMS: Charm-Jet Calibration
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Table 2: The contributions to the 2-jet pseudo-continuous mistagging e�ciency scale factor systematic uncertainties
for particle-flow jets. Listed are the uncertainties related to the CC̄ modelling, the jets and ⇢

miss
T , the light-flavour jet

scale factor, the 1-jet scale factor, and all other sources.

Systematic uncertainty in SF
Tagging interval Jet ?T range [GeV] CC̄ mod. Jet/⇢miss

T Light tag 1-tag Other
85%–100% 20–40 5.3% 0.8% 2.3% – 0.1%
85%–100% 40–65 2.1% 0.3% 1.2% – –
85%–100% 65–140 1.9% 0.2% 0.9% – 0.1%
85%–100% 140–250 2.0% 0.4% 0.9% – 0.1%
77%–85% 20–40 8.3% 3.1% 8.2% – 0.3%
77%–85% 40–65 3.0% 1.0% 3.5% – 0.1%
77%–85% 65–140 3.2% 0.5% 2.4% – 0.2%
77%–85% 140–250 3.9% 0.9% 2.3% – 0.3%
70%–77% 20–40 9.7% 1.2% 2.5% – 0.4%
70%–77% 40–65 4.7% 0.8% 1.1% – 0.1%
70%–77% 65–140 3.7% 0.4% 0.8% – 0.2%
70%–77% 140–250 3.1% 1.0% 0.9% – 0.1%
60%–70% 20–40 11% 0.8% 1.6% – 0.4%
60%–70% 40–65 4.7% 0.6% 0.9% – 0.1%
60%–70% 65–140 4.4% 0.4% 0.6% – 0.2%
60%–70% 140–250 2.6% 1.4% 0.8% 0.2% 0.2%
0%–60% 20–40 17% 3.1% 0.8% 0.2% 1.5%
0%–60% 40–65 11% 3.7% 0.4% 0.1% 0.9%
0%–60% 65–140 8.7% 3.0% 0.2% – 0.7%
0%–60% 140–250 9.7% 7.1% 0.7% – 1.7%
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