

Jet Flavour Tagging at e⁺e⁻

Franco Bedeschi, Loukas Gouskos, Michele Selvaggi [full set of results: <u>arXiv:2202.03285</u>]

> ECFA Higgs/Top/EW group Workshop April 2022

- Jet flavor identification ("tagging"): necessary tool to maximize physics outcome at colliders
- Today: Focus on e+e- colliders
 - provide a very clean environment
 - Much lower occupancy
 - no pileup compared to hadron colliders
- Scope of this work: Build a general framework for developing flavor tagging algorithms for future colliders
 - Fast detector simulation
 - Understand detector requirements/optimize design
 - e.g., Vertexing and PID capabilities of the FCCee detectors
 - Develop a versatile jet flavor tagger for FCCee
 - Identify with high purity gluon / light / strange / charm / bottom quarks

Basics of flavour tagging

- Large Kaon content
 - Charged Kaon as track:
 - K/pi separation
 - Neutral Kaons:

• $K_S \rightarrow \pi \pi$, K_L

Large lifetime

- Displaced vertices/tracks
- Large track multiplicity
- Non-isolated e/µ

Detector constraints:

Pixel/tracking detectors

- Little material, spatial resolution, precise track alignment
- PID detectors:
- timing capabilities, energy loss (gas/silicon)

Loukas Gouskos

FCCee detector

- Ideal for flavor identification [hence: measure Higgs couplings]
 - Impact parameter resolution
 - Low material budget tracker (minimise multiple scattering)
 - Small beam-pipe 1.5 cm -- investigating 1 cm
 - PID capabilities
 - dE/dx (Si tracker) -- Cluster counting dN/dx (Drift)
 - Time of flight -- timing layer

Loukas Gouskos

Simulation

- Detector response based on Delphes:
 - Including FastTrackCovariance
 - Computes:
 - full track covariance matrix
 - Including multiple scattering
 - smeared track using the off-diagonal terms
 - path length and dN/dx for various gas mixes
 - Allows fast turn-around when trying different detector options

• MC Samples:

- MG5+Pythia8 used to generate:
 - $ee \rightarrow ZH \rightarrow vvXX \text{ events } (X: g, ud, s, c, b)$
- Jets clusters with the generalized-kT algorithm using p=-1

• Similar to the anti-k_T algorithm [IRC safe] ouskos Higgs/Top/EW Workshop (April 2022)

Loukas Gouskos

IDEA

Cluster counting dN/dx

- Count number of **primary ionisation** clusters along track path
- Avoids large landau flukes (poisson distributed)
- Requires high granularity
- Module added in Delphes

IDEA detector:

90% He / 10 % Isobutane

Loukas Gouskos

set TrackInputArray TimeSmearing/tracks

set VertexInputArray TruthVertexFinder/vertices

Time Of Flight Measurement

module TimeOfFlight TimeOfFlight {

1: assume vertex time tV = 0

set OutputArray tracks

set VertexTimeMode 2

Allows for good K/pi separation at low momenta:

$$t_{\rm flight} \equiv t_{\rm F} - t_{\rm V} = \frac{L}{\beta} = \frac{L\sqrt{p^2 + m^2}}{p}$$

Need to make assumption on vertex time (crucial for highly displaced K_{S}) : \overrightarrow{A}

Loukas Gouskos

#

Higgs/Top/EW Workshop (April 2022)

3 std deviation K/pi separation for tracks with p < 30 GeV

Flavour tagging using ParticleNet PRD 101 (2020) 5, 056019

- Flavour tagging algorithm based on ParticleNet
 - Jet is represented as a "particle cloud"
- Follow a hierarchical learning approach:
 - First: Learn "local" structures; Then: move to more "global" features
 - Treat the particle cloud as a graph
 - Particles are the vertices of the graph

Relationships between the particles are the edges of the graph

Identify "neighboring" particles

Jet:

Loukas Gouskos

Flavour tagging using ParticleNet (II)

Inputs: 75 particles/jet

Loukas Gouskos

🕅 Input variables

• Comparison of input distributions for different jet flavors

• More comparisons:

https://selvaggi.web.cern.ch/selvaggi/FCC/FCCee/FlavourTagging/

Loukas Gouskos

WP	Eff (b)	Mistag (g)	Mistag (ud)	Mistag (c)	
Loose	90%	2%	0.1%	2%	
Medium	80%	0.7%	<0.1%	0.3%	

WP	Eff (c)	Mistag (g)	Mistag (ud)	Mistag (b)
Loose	90%	7%	7%	4%
Medium	80%	2%	0.8%	2%

Performance (strange/gluon)

strange-tagging

WF	5	Eff (s)	Mistag (g)	Mistag (ud)	Mistag (c)	Mistag (b)	WP	Eff (g)	Mistag (ud)	Mistag (c)	Mistag (b)
Loos	se	90%	20%	40%	10%	1%	Loose	90%	25%	7%	2.5%
Mediu	um	80%	9%	20%	6%	0.4%	Medium	80%	15%	5%	2%

Loukas Gouskos

CERN

Impact of detector configurations

Strange tagging [PID]

- dN/dX brings most of the gain; additional gain w/ TOF (30ps)
 - TOF (3ps) brings marginal improvement
 - dN/dX+TOF(30ps): very close to

- Improvement up to 2x for charm tagging
 - marginal/no improvement in btagging

₩ Higgs couplings: H→cc

$\sqrt{s} \; (\text{GeV})$	24	10	365		
Luminosity (ab^{-1})	E.	5	1.5		
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu \bar{\nu}$ H	HZ	$\nu \bar{\nu}$ H	
$H \rightarrow any$	± 0.5		± 0.9		
$H \rightarrow b\bar{b}$	± 0.3	± 3.1	± 0.5	± 0.9	
$H \rightarrow c\bar{c}$	± 2.2		± 6.5	± 10	
${ m H} ightarrow { m gg}$	± 1.9		± 3.5	± 4.5	
$H \rightarrow W^+W^-$	± 1.2		± 2.6	± 3.0	
$\mathrm{H} \rightarrow \mathrm{ZZ}$	± 4.4		± 12	± 10	
$H \rightarrow \tau \tau$	± 0.9		± 1.8	± 8	
$H \rightarrow \gamma \gamma$	± 9.0		± 18	± 22	
$ H \rightarrow \mu^+ \mu^-$	± 19		± 40		
$H \rightarrow invis.$	< 0.3		< 0.6		

Ref: P. Janot talk at the CDR Symposium; March 2019

- Stat limit [i.e. no BKG]: δ(σxBR)/σxBR (%) ~0.6%
- No BKG rejection: δ(σ×BR)/σ×BR (%) ~2.9%

```
Results look promising
```

₩ Higgs couplings: H→ss

BR(H \rightarrow ss) = BR (H \rightarrow cc) (m_s/m_c)² ~ 2.3 10⁻⁴

FCCee: σ_{ZH} ~200fb, L ~ 5 ab⁻¹ (2 IP): **~1M ZH** [600k H \rightarrow bb, 100k H \rightarrow gg, 30k H \rightarrow cc, **200 H\rightarrow ss**]

Use Tight WP:

[s-tag: 60%, g-mistag, c-mistagm and b-mist: negligible

- The most challenging BKG is ZZ with one Z off-shell ~125 GeV [~10% of the Higgs signal]

- Optimistic assumption:

- 100% of the Higgs events (i.e. the 1M events above) are reconstructed
- 100k ZZ events; (BR for $Z \rightarrow$ ssbar) ~15%
- 15k ZZ events. After applying the Tight WP of the tagger:
- 5.4k events \rightarrow 88/sqrt(5400) = 1.2 σ

Back-of-the envelope estimates

THOROUGH STUDIES NEEDED

Rough numbers from FCC Workshop 2022 [slides]

Alternative approaches

17

- Jet tagging using Recurrent Neural Net (RNN)
 - Inputs: jet-level info + particle-level info [10 highest-p_T particles]
 - Multiclass output: b, c, s, ud, gluon
 - Designed for ILD; uses FullSim

Application on H→ss

- ILC @ 250 GeV; 900 fb⁻¹
- Signal: $Z(\rightarrow vv)H$ and $Z(\rightarrow LL)H$
- Analysis design: selection on evt-level vars
 Signal extraction: fit strange-tagging discriminant

Alternative approaches (II)

- Jet tagging using CNN-2D [focusing on strange-tagging]
 - **Inputs:** jet images; several channels: K, π, e, μ, γ ...
 - Multiclass output: s, u, d
 - IDEA detector; use FastSim
 - Bonus: Improved Jet flavor assignment

Signal Efficiency	10% fake rate	5% fake rate	1% fake rate
Generator	47.2%	27.7%	7.5%
PF only	17.7%	9.7%	2.0%
PF + Ks	21.9%	12.9%	4.4%
PF + Ks + K+-	39.5%	24.8%	7.0%

 - Up to 2x improved ε(SIG) with K_s / K^{+/-} separation

Strange tagging

Impact of PID

Talk @ FCC Physics Perf. meeting

Loukas Gouskos

Summary & outlook

- Powerful jet flavour identification essential for the success of the e⁺e⁻ physics program
- A first version of a jet identification algorithm based on PF candidates and PID and advanced ML in place
 - Multi-class classifier b/c/s/ud/g; Results extremely promising
 - More details: <u>arXiv:2202.03285</u>
- Conclusions:
 - adding an additional vertex layer does not tremendously improve b-tagging performance (resolution of ~ 2um already outstanding)
 - but improves charm tagging
 - Some room for improved in strange tagging with more powerful PID
- Next steps/work in progress
 - Implementation in FCCSW
 - Test performance using FullSim
 - Application on physics analyses [e.g., $H \rightarrow cc, H \rightarrow ss$]

Backup

Loukas Gouskos

Higgs/Top/EW Workshop (April 2022)

20

Impact parameter performance

Credits to Sylvie Braibant

Loukas Gouskos

CERN

Designing a jet flavour tagging algorithm

A point cloud

Source:<u>https://news.voyage.auto/an-introduction-to-lidar-</u> the-key-self-driving-car-sensor-a7e405590cff

- Point cloud (Wikipedia):
 - A set of data **points** in space
 - Produced by 3D scanners, which measure a large number of points on the external surfaces of objects around them

From point clouds <u>to particle clouds</u>

A point cloud

Source:<u>https://news.voyage.auto/an-introduction-to-lidar-</u> the-key-self-driving-car-sensor-a7e405590cff

- Point cloud (Wikipedia):
 - A set of data **points** in space
 - Produced by 3D scanners, which measure a large number of points on the external surfaces of objects around them

A particle cloud

- Particle cloud :
 - A set of **particles** in space
 - Produced by clustering a large number of particles measured by the detectors

Full list of input variables

Variable	Description
	Kinematics
$E_{\rm const}/E_{\rm jet}$	energy of the jet constituent divided by the jet energy
$ heta_{ m rel}$	polar angle of the constituent with respect to the jet momentum
$\phi_{ m rel}$	azimuthal angle of the constituent with respect to the jet momentum
	Displacement
d_{xy}	transverse impact parameter of the track
d_z	longitudinal impact parameter of the track
SIP_{2D}	signed 2D impact parameter of the track
$\mathrm{SIP}_{\mathrm{2D}}/\sigma_{\mathrm{2D}}$	signed 2D impact parameter significance of the track
SIP_{3D}	signed 3D impact parameter of the track
$\mathrm{SIP}_{\mathrm{3D}}/\sigma_{\mathrm{3D}}$	signed 3D impact parameter significance of the track
$d_{ m 3D}$	jet track distance at their point of closest approach
$d_{ m 3D}/\sigma_{d_{ m 3D}}$	jet track distance significance at their point of closest approach
$C_{ m ij}$	covariance matrix of the track parameters
	Identification
q	electric charge of the particle
$m_{ m t.o.f.}$	mass calculated from time-of-flight
dN/dx	number of primary ionisation clusters along track
isMuon	if the particle is identified as a muon
isElectron	if the particle is identified as an electron
isPhoton	if the particle is identified as a photon
isChargedHadron	if the particle is identified as a charged hadron
isNeutralHadron	if the particle is identified as a neutral hadron

🕅 Input variables

• Comparison of input distributions for different jet flavors

Projection || to jet axis

• More comparisons:

https://selvaggi.web.cern.ch/selvaggi/FCC/FCCee/FlavourTagging/

Loukas Gouskos

normalized

Performance vs theta (b/c)

b-tagging

c-tagging

PRELIMINARY !! (LOW STATS TRAINING)

Comparison: IDEA vs. CLD

- No big differences between in input variables between IDEA & CLD
 - small difference in material budget observed on light jets since dxy ~ 0
 - expect slightly better performance for IDEA detector for discrimination vs light

