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From HL-LHC to future colliders

The success of the HL-LHC is a necessary condition for any future collider
LHC has been a tremendous success in discovering the Higgs boson and crystalizing the SM at our accessible energy scales
HL-LHC has the potential to break the SM paradigm and guide future explorations for BSM
Direct searches and SM measurements go hand-in-hand
The success of the HL-LHC will also demonstrate our ability as an international community to come together and accomplish a
broad-spectrum and unique cutting-edge research
All international HEP planning processes (ESG, Snowmass etc.) are informed by the LHC results and any decision making is
guided by LHC findings
It is our responsibility to harvest the wealth of data that we expect at HL-LHC
No theoretical guidance of where new physics may hide = we have to rely on experimental data for such guidance
More tantalizing anomalies are popping up in precision measurements, e.g. W mass, rare processes, g-2
=>» HL-LHC can shed light to several of these anomalies
=> We may expect more of anomalies at HL-LHC, thanks to larger datasets, higher reach in energy scales, and higher

precision measurements
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From HL-LHC to future colliders

Guidance to BSM will come from direct searches, and systematic tests of the SM paradigm
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Prospects studies for HL-LHC

* Snowmass Update in 2022:

LHC Collaborations have carried out several studies for the AT ST SR 02D G

European Strategy (Yellow Report) and the US HEP planning CMS PAS FTR-22-001

S * Yellow Report in 2018:

(Snowmass) https://arxiv.org/abs/1902.04070

Electroweak measurements are the next frontier of precision physics

Low cross sections of EW processes benefit from the large HL-LHC dataset to go beyond the simple process

observations
Detail studies of production properties, e.g. differential cross sections
Higher reach in energy scales, e.g. tails of distributions
Constraining of BSM scenarios

HL-LHC will enable currently unachievable measurements

Detector upgrades will allow for better forward jet and lepton reconstruction, essential to improve current
measurements

Sophisticated analysis techniques (e.g. ML) are necessary to extract as much information as possible
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W mass

Science 376,170

W mass is a key parameter of the standard model R A _
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Precise W mass measurements at HL-LHC will be very important

To confront CDF measurement: < 10 MeV precision is needed
To confront SM prediction: < 6 MeV precision is needed (80,357 + 6 MeV)
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W mass at HL-LHC

<10 MeV uncertainty at HL-LHC is challenging but achievable with exp. and theory improvements
Need to improve theoretical modelling (PDF, W p+)
-> exploit extended lepton rapidity (|n|<4) and ancillary measurements (W, Z cross sections and pr)

Special accelerator runs with low pileup (1~2) to precisely measure missing energy, and collect at least 2x10® W events (200 pb)

= ~5 MeV is a possible target with 2 1 fb™* of low pileup data
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Weak Mixing Angle

Weak Mixing angle is another fundamental SM parameter
Closely related to other SM parameters, e.g. W mass

LEP-1 and SLD: Z-pole
LEP-1 and SLD: Arp
SLD: A,
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Weak Mixing Angle at HL-LHC
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Multiboson production

Standard Model Production Cross Section Measurements Status: February 2022
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VBS W*W=* and W*Z at HL-LHC

Same sign W*W* is the golden Vector Boson Scattering channel thanks to high S/B ratio
ATLAS (CMS) expect to measure the EW production cross-section to 6% (3%) with 3000 fb* in the
fully leptonic final state

CMS: <8% precision in W*Z cross-section measurement achievable with 3000 fb™
Simultaneous measurement in CMS of EW W*W*, EW W*Z, and QCD W+*Z
Binned maximume-likelihood fit of several distributions sensitive to these processes
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VBS ZZ at HL-LHC
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SemileptonicVBS VV at HL-LHC

Semileptonic VV final states are affected by larger
background, but typically provide more stringent limits on
anomalous couplings thanks to the larger branching ratios,
thus higher event yield, and higher reach in energy scales
Expected precision of 6.5% with 3000 fbin semileptonic
VBS WV-=>lvqq channel

Greater precision (<3%) is reached when multiple channels

are combined
Jet substructure technique necessary to control pileup

Multivariate analysis used to discriminate signal from backgrounds
(W+jets and ttbar)
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Longitudinal polarization (V V) at HL-LHC

VV production cross sections are unitarized in SM thanks to the Higgs boson

The extractions of longitudinally polarized V,V, components are important tests of the SM
Cross-section for the longitudinally polarized state is small (6—7% of total cross-section),
making this a challenging but important part of the HL-LHC physics program

Extraction of longitudinal polarization contribution in fits of event kinematics, e.g. A¢(j,j), or using machine learning
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L
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0 2000 4000 6000 channels
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Longitudinally polarization the fully leptonic W*W* final state
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Triboson production at HL-LHC

HL-LHC offers a large improvement to multi-boson production
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More sophisticated analysis techniques (ML) would significantly improve results
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High level of background control (e.g diboson and instrumental background arising from fake-leptons) will be needed
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Photon-photon interactions

Photon-photon interactions are very sensitive to anomalous

triple and quartic gauge couplings
w2y 2T 2 W
clean signatures with no additional charged particles (tracks)

Ongoing program at the LHC in pp and HI collisions
Light-by-Light scattering measured by both ATLAS and CMS in HIUPC
Observation of exclusive yy=> WW production with 8.4 & significance

HL-LHC will increased statistical precision and will allow

studies into the high-energy tails of the distributions

These are statistically limited processes that will benefit from larger datasets
and improved trigger capabilities

Sensitivity to BSM (e.g. axion-like particles)
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Light-by-Light Scattering

vYy=>7vY has small cross-section O(a%)

Special trigger and energy reconstruction (Er<10 GeV)

Sensitivity to BSM (e.g. axion-like particles)

Clean BSM signals over falling SM bkg

Light-by-Light interactions from Pb-Pb measured by both ATLAS and
CMS already set the most stringent limits for m, ~ 5 - 100 GeV and will

improve with new data
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vy =2 F1" in HI collisions

UPC Hl collisions provide a clean environment for yy-induced processes
Exclusive production of dimuon pairs (yy—=> u*u*) will be precision-like in
HL-LHC

Mgimuon™ 100 GeV, calibration of photon flux, constrain predictions for ditaus etc.
vy t51 T is sensitive to physics beyond the standard model: constraints
on the anomalous magnetic moment of the 7 lepton, currently known

with poor precision from past lepton-lepton collider
CMS-PAS-HIN-21-009
DELPHI, ee—e(yy—1r)e

4x improvement wrt LHC measurements
Including more decay channels and

improving analysis techniques, precision
in anomalous magnetic moment of the t :
lepton can surpass the existing lepton- !
lepton collider measurements
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ry =2 W*W" in HL-LHC pp collisions

HL-LHC prospect study for yy=2>W*W* = e*v+u'v is based on ATLAS Run-2 data analysis
Critical aspect of this analysis is impact of pileup
Improvements to track reconstruction will be important
Best performance is for central tracks, with a track p; cut of oo MeV
Background efficiency falls as dilepton mass increases = good for high-mass studies
HL-LHC analysis will have a reduced statistical uncertainty over what will be obtained from Run-2 and Run-3

Essential to reduce background modelling systematics to keep up with the increase in statistical precision
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EW Physics with Forward p-tagging

Central Exclusive Production to constrain anomalous
quartic gauge coupling (dim-8 operators)
Peripheral (photon-induced) interactions
Clean environment with low QCD background at high-mass scales
Low cross sections = run in nominal HL-LHC running with tagged proton
Timing information (~10 ps) important to reduce background (pileup)

Expected bounds at 95% CL
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Conclusions

The EW program at the HL-LHC is broad and versatile as well as critical to fully explore the SM and
constrain or discover new physics

Experimental challenges, e.g. pileup and data rate, can be overcome with upgraded detectors (e.qg.
tracking, timing, triggering), and advances in experimental techniques (ML, jet substructure etc.)
Measurements of SM parameters (W mass, Weak Mixing angle) can approach precision of current
world best measurements

The large HL-LHC dataset will allow precision measurements of multiboson production and the
extraction of longitudinal polarization in vector boson scattering cross sections

The EW program at the HL-LHC can be carried out in central pp collisions, HI collisions as well as
with forward proton-tagging, e.qg. light-by-light scattering, photon-induced processes

With no doubt we will do better than currently projected (see LHC experience)
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Photon-photon interactions
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Weak Mixing Angle

The extended lepton acceptance decreases the statistical uncertainties by about 30%,
PDF uncertainties by about 20%.
PDF uncertainty could be constrained to improve the precision of weak mixing angle
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Longitudinal polarization (W* Z, Z,Z7,)

Longitudinally polarization significance in

W, Z, observation significance at HL-LHC the fully leptonic ZZ final state
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Charged lepton flavor violation

ATL-PHYS-PUB-2018-032

SM Charged Lepton Flavor Violation effects are too small
to be observed at LHC, but limits on cross-section will
provide constraints on BSM models

T->3u constrained in ATLAS with 8 TeV data usingW=>1v

events

Sensitivity calculated using a profile likelihood fit of a BDT discriminant
and 3-muon mass shape to the expected event yields in the signal region

HL-LHC projection: analysis improvements will have a
significant impact on the sensitivity of these results by up

to a factor 5ox
Further improvements may be possible using the 7 leptons produced

from heavy flavor meson decays, primarily from Ds decays, which
provide around 4o times more 7 leptons than the W-boson channel

Alessandro Tricoli
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Three scenarios considered based on predicted changes to
low-pT muon triggers and improvements in mass resolution
from better tracking and vertexing in upgraded detector
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