New charged scalar contributions to $h \rightarrow Z\gamma$ in the 3HDM

Emine Yildirim (Karadeniz Technical University)

Based on: [2112.06836 hep-ph](accepted for publication at the IJMPA)

ECFA WHF WG1: 1st Workshop of the Higgs/Top/EW group

20th April 2022 CERN

Plan of Talk

- Review of the 3-Higgs Doublet Models (3HDMs)
 - -Motivation to study 3HDM
- Constraints on the model parameters from the measurement of $h \rightarrow \gamma \gamma$ at the LHC
- Enhancement in $h \rightarrow Z\gamma$ decay in the 3HDM is the main result of this talk
- Conclusion and Outlook

Review of the 3HDM

Motivation to study 3HDM

- In 3HDMs there are four charged Higgs bosons (denoted by H₁[±] and H₂[±]), three CP even Higgs bosons (denoted by h, H₁ and H₂), two CP odd Higgs bosons (denoted by A₁ and A₂) and more parameters determine the phenomenology of the Higgs sector than in 2HDMs.
- It offers rich phenomenology at the LHC

In this talk, we discuss $h \to \gamma \gamma$, $Z\gamma$ decays in the 3HDM. These loop induced processes are sensitive to new physics contributions H_1^{\pm} and H_2^{\pm} .

Review of the 3HDM (Cont.) Structure of CP-Conserving 3HDM Scalar Sector

The most general Higgs potential invariant under the $SU(2)_L \times U(1)_Y \times Z_2 \times \tilde{Z}_2$ symmetry is expressed by

$$\begin{split} V(\Phi_1, \Phi_2, \Phi_3) &= \sum_{i=1}^3 m_i^2 \Phi_i^{\dagger} \Phi_i - (m_{12}^2 \Phi_1^{\dagger} \Phi_2 + m_{13}^2 \Phi_1^{\dagger} \Phi_3 + m_{23}^2 \Phi_2^{\dagger} \Phi_3 + \text{h.c.}) \\ &+ \frac{1}{2} \sum_{i=1}^3 \lambda_i (\Phi_i^{\dagger} \Phi_i)^2 + \rho_1 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \rho_2 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{1}{2} [\rho_3 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.}] \\ &+ \sigma_1 (\Phi_1^{\dagger} \Phi_1) (\Phi_3^{\dagger} \Phi_3) + \sigma_2 |\Phi_1^{\dagger} \Phi_3|^2 + \frac{1}{2} [\sigma_3 (\Phi_1^{\dagger} \Phi_3)^2 + \text{h.c.}] \end{split}$$

The general 3HDM contains three scalar $SU(2)_L$ doublet fields, denoted here as

$$\Phi_i = \begin{bmatrix} \omega_i^+ \\ \frac{1}{\sqrt{2}}(h_i + v_i + iz_i) \end{bmatrix}, \quad (i = 1, ...3),$$

h is the lightest CP-even scalar
in the 3HDM

where the v_i 's are the VEVs of the Φ_i 's with the sum rule $\sum_i v_i^2 \equiv v^2 = 1/(\sqrt{2}G_F) \leq (246 \text{ GeV})^2$.

• The model has nine scalar physical particles: (i) three CP-even scalars $(h, H_{1,2})$, (ii) two CP-odd scalars $(A_{1,2})$, and (iii) four charged scalars $(H^{\pm}_{1,2})$. Eighteen physical parameters

$$m_h,\ m_{H_1},\ m_{H_2},\ m_{H_1^\pm},\ m_{H_2^\pm},\ m_{A_1},\ m_{A_2},\ v,\ aneta,\ an\gamma,\ heta_1,\ heta_2,\ lpha_{1,2},\ heta,m_{12},\ m_{23},\ and\ m_{13}.$$

The VEVs may be introduced by the two ratios: $\tan \beta \equiv \frac{v_2}{v_{13}}$, $\tan \gamma \equiv \frac{v_3}{v_1}$, with $v_{13} \equiv \sqrt{v_1^2 + v_3^2}$. $m_{H_{1,2}^+}, m_h, \tan \beta, \tan \gamma, \theta_{2,\alpha}, \alpha_{1,2}, \theta, m_{12,\alpha}, m_{13,\alpha}, \eta_{23,\alpha}$, Relevant parameters to loop induced decays

Review of the 3HDM (Cont.) Yukawa Sector

• The Yukawa Lagrangian of the 3HDM is given by

$$-\mathcal{L}_Y = Y_u \bar{Q}_L (i\sigma_2) \Phi_u^* u_R + Y_d \bar{Q}_L \Phi_d d_R + Y_e \bar{L}_L \Phi_e e_R + \text{h.c.},$$

where $\Phi_{u,d,e}$ are either Φ_1 , Φ_2 or Φ_3 .

• Five independent types of 3HDMs exist under Z_2 symmetries

A. G. Akeroyd, S. Moretti, K. Yagyu and E. Yildirim, Int. J. Mod. Phys. A 32, no.23n24, 1750145 (2017) [arXiv:1605.05881 [hep-ph]].

Each fermion couple to only single doublet to	Yukawa Types	Φ_u	Φ_d	Φ_e
avoid Flavor Changing Neutral Currents	Type-I	Φ_2	Φ_2	Φ_2
(FCNCs).	Type-II	$ \Phi_2 $	Φ_1	Φ_1
	Type-X	$ \Phi_2 $	Φ_2	Φ_1
Kinetic Lagrangian	Type-Y	$ \Phi_2 $	Φ_1	Φ_2
	Type-Z	Φ_2	Φ_1	Φ_3

$$\begin{aligned} \mathcal{L}_{kin} &= \sum_{i=1}^{3} |D_{\mu} \Phi_{i}|^{2} \ni \frac{g^{2}}{2} W_{\mu}^{+} W^{\mu -} \left(\sum_{i=1}^{3} \nu_{i} h_{i} \right) \\ &= \frac{g^{2} \nu}{2} W_{\mu}^{+} W^{-\mu} \left(\frac{1}{\nu} \sum_{i=1}^{3} \nu_{i} h_{i} \right) \end{aligned}$$

LOOP INDUCED DECAYS INTO YY, ZY

The hZ γ and h $\gamma\gamma$ vertices are induced at the 1-loop level.

Decay rates:

Constraints from the LHC measurement of $h \rightarrow \gamma \gamma$ on the model parameters

 We investigate the allowed parameter space of the model parameters by applying the measured values of Higgs to diphotons at the LHC.

- The contour lines in the figures show the allowed points of parameter spaces.
- One can see that allowed regions depend heavily upon the choice of tan β , tan γ , and m_{H1} \pm , m_{H2} \pm and $\alpha_{1,2,}\theta$. 7/11

The dependence of $\Gamma(h \rightarrow Z\gamma)$ on the model parameters

• We will discuss the decay partial width of $\Gamma(h \rightarrow Z\gamma)$ while respecting the parameter spaces that are allowed by the $\Gamma(h \rightarrow \gamma\gamma)$ analysis.

 $\Gamma(h \rightarrow Z\gamma)$ is sensitive to tan(β), tan(γ), CP even mixing angles ($\alpha_{1,2}, \theta$) and $m_{_{H1,2}} \pm$

Enhancement of $h \rightarrow Z\gamma$ from new charged scalars

We indicate the deviation in the decay partial width of $\Gamma(h \rightarrow Z\gamma)$ with respect to the SM prediction.

• We present the deviation in the branching ratio of BR($h \rightarrow Z\gamma$) with respect to the SM value.

- WHY the deviation in the BR($h \rightarrow Z\gamma$) relative to the SM prediction is larger than that in $\Gamma(h \rightarrow Z\gamma)$ relative to the SM prediction?
- ✓ The partial widths of (h → ff, gg) in Type-I 3HDM are significantly reduced with respect to their SM value so the total decay width in Type-I 3HDM is smaller than that in the SM. 9/11

Conclusion and Outlook

We have seen that

- the new charged Higgs bosons $H_{1,2}^{\pm}$ can significantly alter the decay widths $h \rightarrow Z\gamma$
- model parameters affect significantly to this decay
- BR(h \rightarrow Z γ)_{3HDM} enhances considerably compared to the SM prediction, while respecting constraints from h $\rightarrow \gamma\gamma$
- ✓ the Type-I and Type-Z 3HDM are not disentangled via Zγ decay since Zγ decay is dominated by the H_1^{\pm} and H_2^{\pm} bosons loop contributions
- ✓ The current searches at the LHC have a limit of about 4 times the $h \rightarrow Z\gamma$ signal strength in the Standard Model. Hence one would expect this decay to be observed in the high-luminosity run of the LHC if its branching ratio is close to that of the prediction in the Standard Model.

Thank You!