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•MeV ions – heavy 
ionizing particles

•Charge transport 
probing with IBIC

Ion microprobe

•Control of ionization density by: 

•Different ion M/E

•Change of the angle of incidence

•KDetSim modelling of lateral 
diffusion during charge collection

Gain suppression 
in LGAD • Ion-TCT signal 

analysis for 
LGADS

•Rad. damage 
studies

Additional 
examples
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AT SPATIAL AND TEMPORAL SCALES 
RELEVANT FOR OBSERVING THE 
UNDERLAYING SOLID-STATE DYNAMICS
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Ion microbeam – semiconductor charge transport probing

• Spatial mapping

• Depth probing and 
ionization density

• Ion rate control
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IN THIS STUDY:
𝐝𝑬

𝐝𝒙
𝟏𝟎𝟎 – 𝟏𝟐𝟎𝟎𝟎 MeV/cm



Charge transport in LGAD using IBIC technique
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LGAD samples info:
Active volume: 50 μm
Full depletion: 61 V
Breakdown: ≈160 V
𝑁𝑒𝑓𝑓 (p

+) ~ (𝑒16 − 𝑒17)𝑐𝑚−3

𝑁𝑒𝑓𝑓 (n
++) ~ 𝑒20𝑐𝑚−3

𝑁𝑒𝑓𝑓 (p
+) ~ (𝑒16 − 𝑒17)𝑐𝑚−3

• Ion Beam Induced Charge microscopy

Low-noise
Charge sensitive preamp

ORTEC 142A or 
AMPTEK A250



Charge transport in LGAD using IBIC technique

December 1st, 2022Andreo Crnjac,   41st RD50 meeting,   Seville, Spain 4

p++

n++

p
+

p++

n++

p

p++
-

+

-
+

- Probing ion 
beam 

LGAD samples info:
Active volume: 50 μm
Full depletion: 61 V
Breakdown: ≈160 V
𝑁𝑒𝑓𝑓 (p

+) ~ (𝑒16 − 𝑒17)𝑐𝑚−3

𝑁𝑒𝑓𝑓 (n
++) ~ 𝑒20𝑐𝑚−3

𝑁𝑒𝑓𝑓 (p
+) ~ (𝑒16 − 𝑒17)𝑐𝑚−3

• Ion Beam Induced Charge microscopy

Low-noise
Charge sensitive preamp

ORTEC 142A or 
AMPTEK A250



Charge transport in LGAD using IBIC technique

December 1st, 2022Andreo Crnjac,   41st RD50 meeting,   Seville, Spain 4

p++

n++

p
+

p++

n++

p

p++
-

+

-
+

- Probing ion 
beam 

LGAD samples info:
Active volume: 50 μm
Full depletion: 61 V
Breakdown: ≈160 V
𝑁𝑒𝑓𝑓 (p

+) ~ (𝑒16 − 𝑒17)𝑐𝑚−3

𝑁𝑒𝑓𝑓 (n
++) ~ 𝑒20𝑐𝑚−3

𝑁𝑒𝑓𝑓 (p
+) ~ (𝑒16 − 𝑒17)𝑐𝑚−3

Interaction volume 
between the ion and 
the detector is well 
defined

Spatially resolved 
information

• Ion Beam Induced Charge microscopy

Low-noise
Charge sensitive preamp

ORTEC 142A or 
AMPTEK A250



Charge transport in LGAD using IBIC technique

December 1st, 2022Andreo Crnjac,   41st RD50 meeting,   Seville, Spain 4

p++

n++

p
+

p++

n++

p

p++
-

+

-
+

- Probing ion 
beam 

LGAD samples info:
Active volume: 50 μm
Full depletion: 61 V
Breakdown: ≈160 V
𝑁𝑒𝑓𝑓 (p

+) ~ (𝑒16 − 𝑒17)𝑐𝑚−3

𝑁𝑒𝑓𝑓 (n
++) ~ 𝑒20𝑐𝑚−3

𝑁𝑒𝑓𝑓 (p
+) ~ (𝑒16 − 𝑒17)𝑐𝑚−3

Interaction volume 
between the ion and 
the detector is well 
defined

Spatially resolved 
information

• Ion Beam Induced Charge microscopy

Spatial resolution defined by the beam spot, usually ≤ 1 μm

Low-noise
Charge sensitive preamp

ORTEC 142A or 
AMPTEK A250



Charge transport in LGAD using IBIC technique

December 1st, 2022Andreo Crnjac,   41st RD50 meeting,   Seville, Spain 4

p++

n++

p
+

p++

n++

p

p++
-

+

-
+

- Probing ion 
beam 

LGAD samples info:
Active volume: 50 μm
Full depletion: 61 V
Breakdown: ≈160 V
𝑁𝑒𝑓𝑓 (p

+) ~ (𝑒16 − 𝑒17)𝑐𝑚−3

𝑁𝑒𝑓𝑓 (n
++) ~ 𝑒20𝑐𝑚−3

𝑁𝑒𝑓𝑓 (p
+) ~ (𝑒16 − 𝑒17)𝑐𝑚−3

Interaction volume 
between the ion and 
the detector is well 
defined

Spatially resolved 
information

• Ion Beam Induced Charge microscopy

Spatial resolution defined by the beam spot, usually ≤ 1 μm

570 μm

5
7

0
 μ

m

190 μm
1

9
0

 μ
m

Low-noise
Charge sensitive preamp

ORTEC 142A or 
AMPTEK A250



Gain suppression in Low Gain Avalanche Diodes (LGAD)
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Lower then expected signal amplitude has been 
observed in studies with MeV ions, laser light and 
alpha particles [REF: 1, 2]

Our goal: investigate the role of 
ionization density using MeV 
ions with 
1) different penetration depths,
2) changing angle of incidenceResults published in May 22 [Ref: 3]
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Lower then expected signal amplitude has been 
observed in studies with MeV ions, laser light and 
alpha particles [REF: 1, 2]

Our goal: investigate the role of 
ionization density using MeV 
ions with 
1) different penetration depths,
2) changing angle of incidence

1) Different penetration depths

3 proton energies

e-
6.9 μm

11.8 μm
40 μm

× 104 𝑒𝑉/𝜇𝑚

For deep protons  -> peak gain at FDV

Max. ionization at different depths

Results published in May 22 [Ref: 3]
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1) Different penetration depths

e-

2) Changing angle of incidence
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dE/dx = 284 MIP !



December 1st, 2022Andreo Crnjac,   41st RD50 meeting,   Seville, Spain 7

Please see previous reports 
from the Seville group:

Sebastian Pape - 40th meeting

Maria Del Carmen Jimenez 
Ramos – 38th meeting
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LG
A

D

Carbon ions of 
different energy
(injected from the 
top electrode)

2 GHz bandwidth

Offline analysis

Analysis of Ion – TCT signals 

4 MeV protons, 
injected from the top 
or the back electrode

70 V

100 V
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Radiation damage
studies with μBeam
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Radiation damage
studies with μBeam

Comparison of 
pristine and 
proton damaged
diamond 
detector charge 
transient signals

A

B

A

B

IBIC map
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• MeV ions injected in LGAD samples to induce high ionization and study gain suppression physics

• Deeply penetrating protons experience lower gain suppression with increasing electric field as 
compared to shallow penetrating protons – diffusion of the charge cloud

• Probing with frontal and 45° ion beam with similar ionization profile demonstrates critical 
influence of ionization density on gain performance

• Ion-TCT signals induced by ions injected from the top and the back side – shape analysis

• Additional ion microprobe capabilities:
• Selective introduction of the radiation damage

• Online monitoring of the accumulated fluence
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Trans-national access to RBI facility
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Collaborations from the last 6 years regarding detector testing
Through the AIDA2020 and RADIATE (more than 20 experiments)

New applications – EuroLABS (2022 – 2026)

This proposal brings together for the first time in 
Europe the three communities engaged in Nuclear 
Physics and Accelerator/ Detector technology for 
High Energy Physics.

https://web.infn.it/EURO-LABS/wp4/

https://web.infn.it/EURO-LABS/wp4/
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