

Two Photon Absorption – Transient Current Technique: Techniques for the investigation of segmented sensors and the influence of temperature

Esteban Currás¹, Marcos Fernández García^{1,2}, Michael Moll¹, Raúl Montero³, Rogelio Palomo⁴, Sebastian Pape^{1,5}, Christian Quintana², Iván Vila², Moritz Wiehe¹

¹CERN ²Instituto de Física de Cantabria ³Universidad del Pais Vasco (UPV-EHU) ⁴Universidad de Sevilla ⁵TU Dortmund University

Federal Ministry of Education and Research

41st RD50 workshop – S. Pape in Seville

30.11.2022

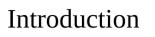
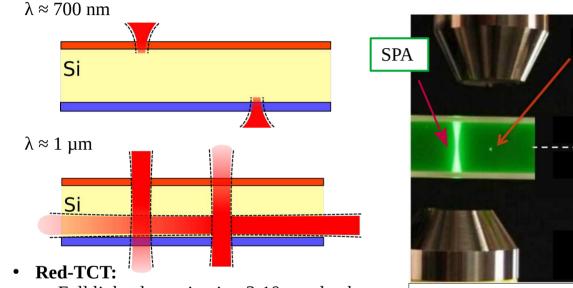


Table of content

- Introduction to TPA-TCT and the setup at CERN SSD
- Method for the investigation of segmented devices
 - The weighted prompt current method
 - Application: HV-CMOS, Strip detector & Passive strip CMOS detector
- The mirror technique

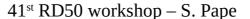
• Influence of the temperature on the Two Photon Absorption – Transient Current Technique

• **Backup:** Photos of the TPA-TCT setup @ CERN SSD



Methods for segmented devices

Single Photon Absorption-TCT

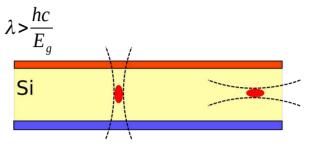


- + Full light absorption in ~3-10 μm depth
- optimal for e/h separation
- Laser can be micro focused to < 5 μm: **2D resolution**
- IR-TCT:

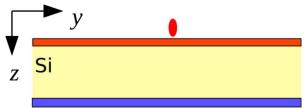
CERN

- To mimic MIPs (continuous laser absorption)
- Normally 6-10 µm **2D resolution**
- Edge injection in thick devices allows a depth study

30.11.2022



Photography: **Ciceron Yanez**, University of Central Florida TPA

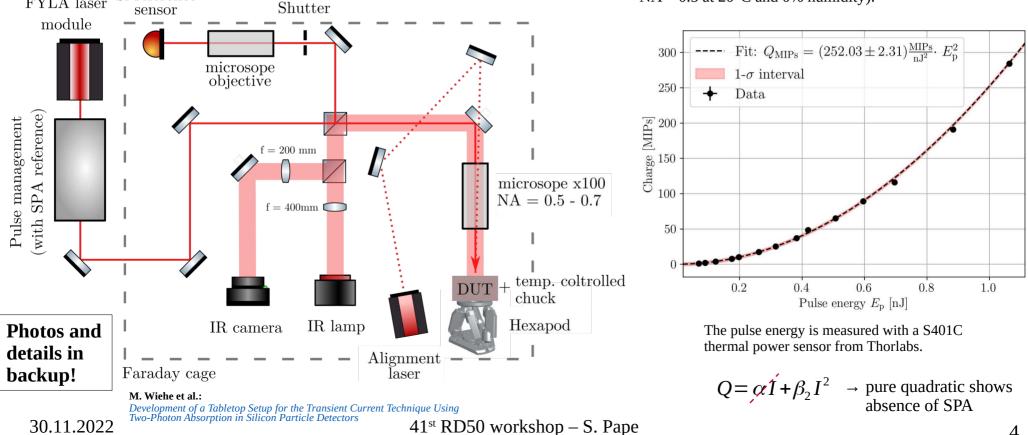

Focal

plane

Two Photon Absorption-TCT

- **TPA** excites charge carriers into the CB
- Non-linear effect, depends quadratic on the intensity
- → main excitation around focal point
- **3D resolution** tool for the detector characterisation:

FYLA laser


TPA-TCT: Setup & Calibration

Sketch of the TPA-TCT setup at CERN SSD:

Si reference

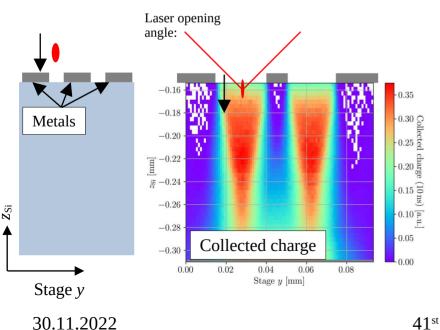
Calibration:

Pulse energy against generated charge (in a 285 µm PIN; NA = 0.5 at 20°C and 0% humidity):

Method for the investigation of segmented devices: Motivation

TPA-TCT requires high focusing optics, with large opening angles (up to 45°)

- $\rightarrow\,$ can lead to laser beam clipping at metallisations or geometry of the DUT
- $\rightarrow\,$ laser intensity, i.e. charge generation can be position dependent



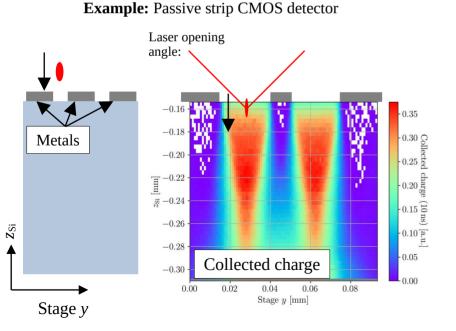
Method for the investigation of segmented devices: Motivation

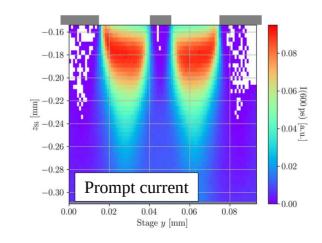
TPA-TCT requires high focusing optics, with large opening angles (up to 45°)

- $\rightarrow\,$ can lead to laser beam clipping at metallisations or geometry of the DUT
- $\rightarrow\,$ laser intensity, i.e. charge generation can be position dependent
- \rightarrow can lead to artefacts in the measurement of the collected charge

Example: Passive strip CMOS detector

• Charge collection profile is distorted by laser beam clipping at the top side metallisations




Method for the investigation of segmented devices: Motivation

TPA-TCT requires high focusing optics, with large opening angles (up to 45°)

- $\rightarrow\,$ can lead to laser beam clipping at metallisations or geometry of the DUT
- $\rightarrow\,$ laser intensity, i.e. charge generation can be position dependent
- $\rightarrow\,$ can lead to artefacts in the measurement of the collected charge

- Charge collection profile is distorted by laser beam clipping at the top side metallisations
- The collected charge propagates to the **prompt current**:

 $I_{pc} \approx Q \vec{E}_w (\mu_e + \mu_h) \vec{E}$

The prompt current method is widely used for studies of the **electric field / drift velocity**

More details on the prompt current method:

G. Kramberger et al. Investigation of Irradiated Silicon Detectors by Edge-TCT

30.11.2022

 41^{st} RD50 workshop – S. Pape

The weighted prompt current method

To mitigate the dependence on the laser intensity, the prompt current can be weighted with the collected charge:

Prompt current

$$I_{pc} \approx Q \, \vec{E}_w (\mu_e + \mu_h) \, \vec{E}$$

Weighted prompt current

$$\frac{I_{pc}}{Q_{coll}} \approx \vec{E}_{w} (\mu_{e} + \mu_{h}) \vec{E}$$

Both methods allow to investigate the electric field / drift velocity ($\vec{v_d} = \mu_{e/h} \vec{E}$).

The weighted prompt current method

To mitigate the dependence on the laser intensity, the prompt current can be weighted with the collected charge:

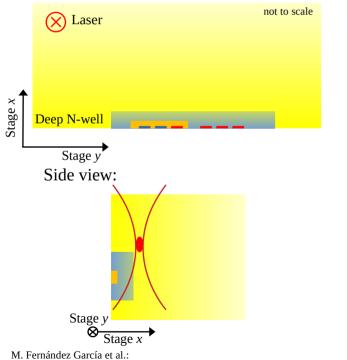
Prompt current

 $I_{pc} \approx Q \vec{E_w} (\mu_e + \mu_h) \vec{E}$

Weighted prompt current

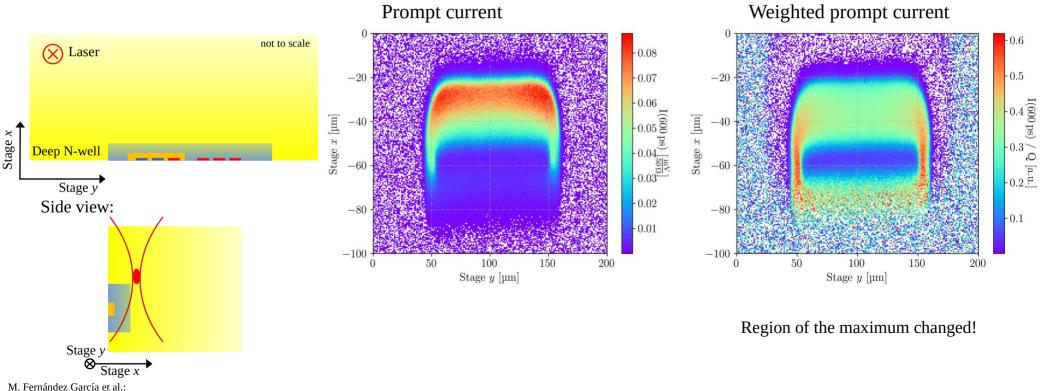
 $\frac{I_{pc}}{O_{coll}} \approx \vec{E}_{w} (\mu_{e} + \mu_{h}) \vec{E}$

Both methods allow to investigate the electric field / drift velocity ($\vec{v_d} = \mu_{e/h} \vec{E}$).


Comments on the weighted prompt current:

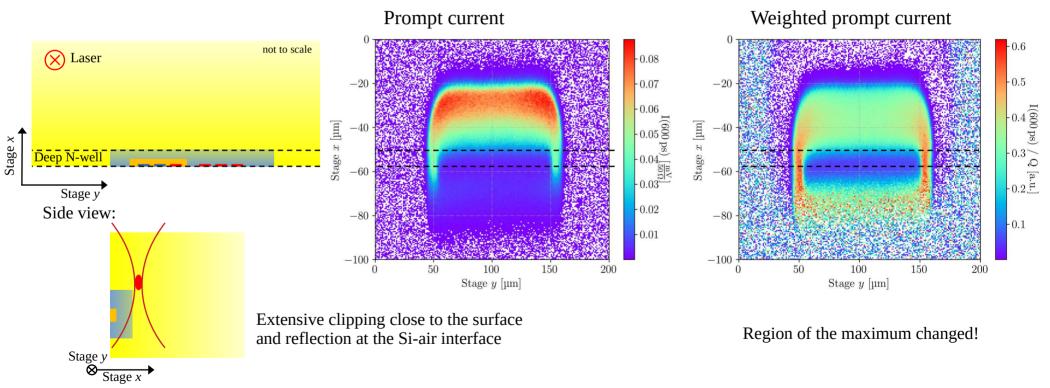
- Weighting requires that all generated charge is collected: $Q = Q_{coll}$ \rightarrow not applicable if meaningful trapping or charge loss is present
- More sensitive towards the SNR than the prompt current method and small signals \rightarrow "0 / 0"
- Not affected by intensity varying effects (reflection, clipping, etc.)

S. Pape et al. [arXiv:2211.10339] Techniques for the investigation of segmented sensors using the Two Photon Absorption – Transient Current Technique



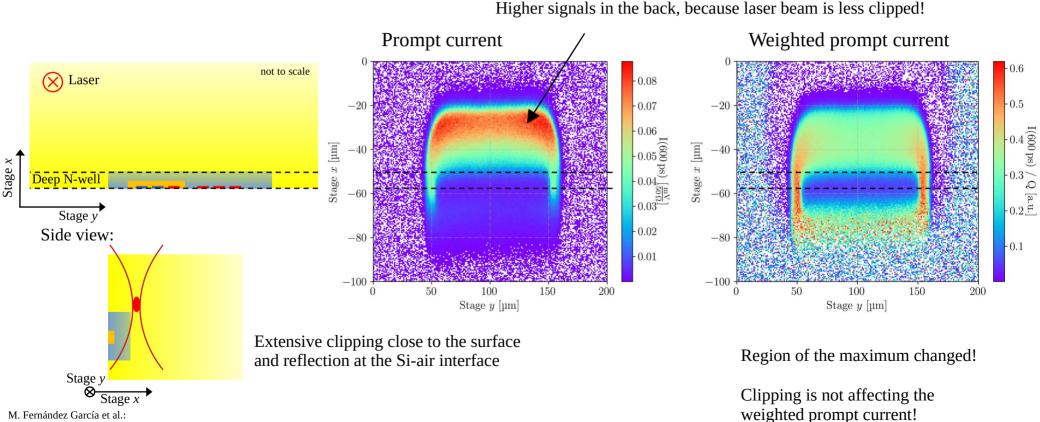
High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT)

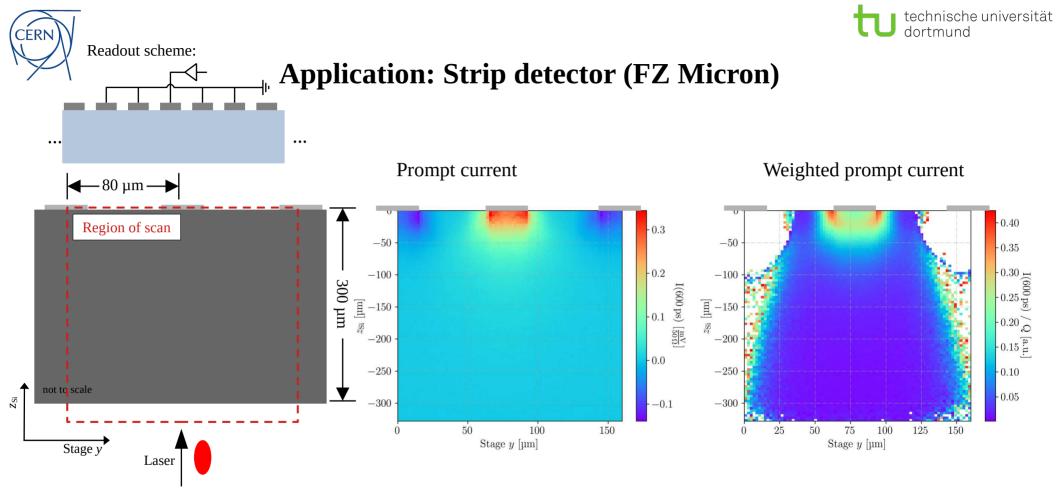
30.11.2022

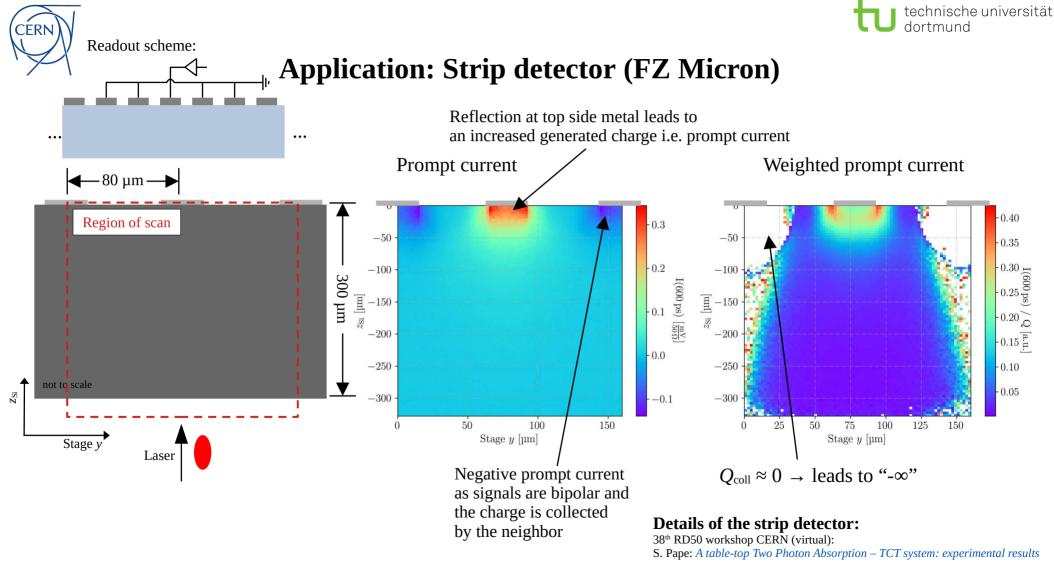


High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT)

30.11.2022




M. Fernández García et al.: High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT) 30.11.2022 41



M. Fernández García et al.: High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT) 30.11.2022 41

Details of the strip detector:

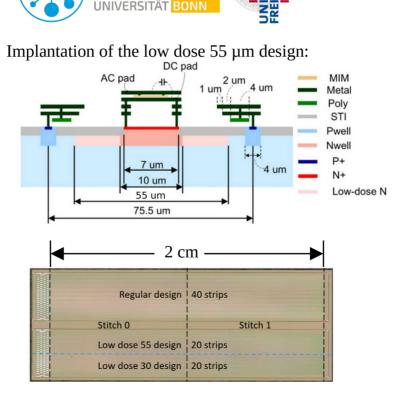
38th RD50 workshop CERN (virtual): S. Pape: A table-top Two Photon Absorption – TCT system: experimental results

30.11.2022

Passive strip CMOS detector

UNIVERSITÄT BONN

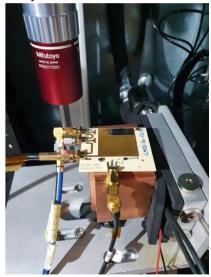
Common project of:


DESY.

- Cost efficient device for large ٠ detector application
- Produced by LFoundry, using a 150 nm • process
- Stitching of 1 cm² reticles
- p-type bulk ٠
- Multiple implantation designs available ٠ \rightarrow here tested: low dose 55 µm

More details on the device and project: L. Diehl et al.

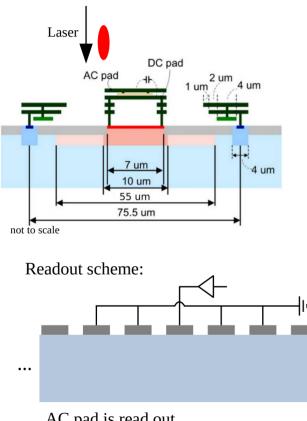
Characterization of passive CMOS strip sensors



Mounted in the TPA-TCT setup at CERN:

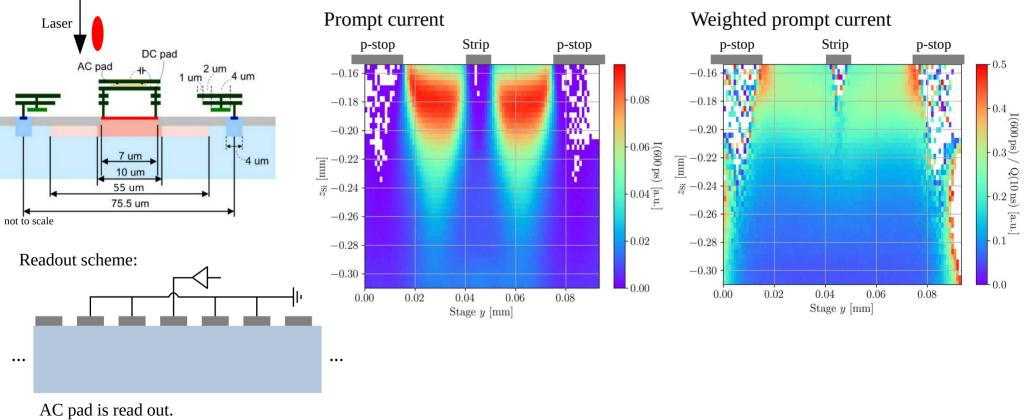
technische universität

dortmund



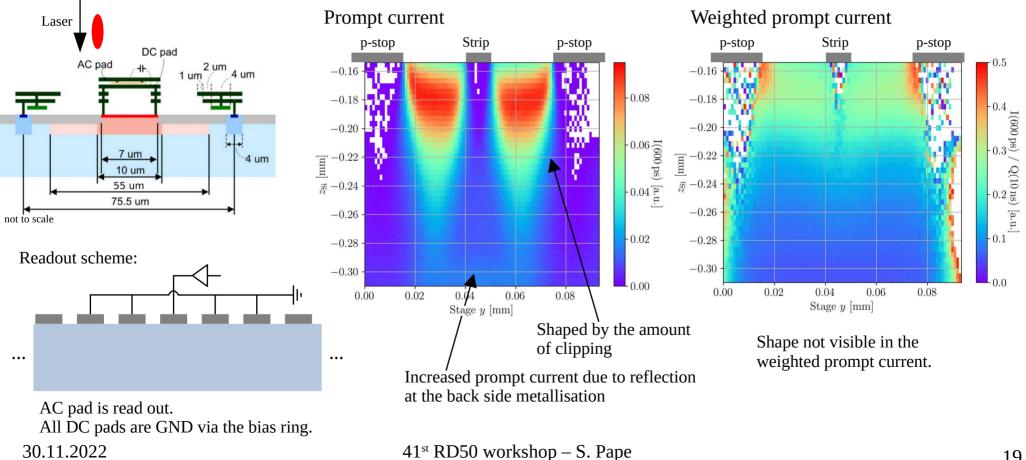
Also see M. Baselga's talk on Fri. 900

Application: Passive strip CMOS detector (low dose 55 µm design)



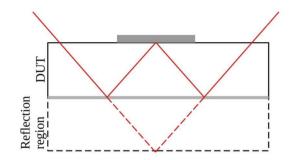
AC pad is read out. All DC pads are GND via the bias ring. 30.11.2022 ...

Application: Passive strip CMOS detector (low dose 55 µm design)


All DC pads are GND via the bias ring.

30.11.2022

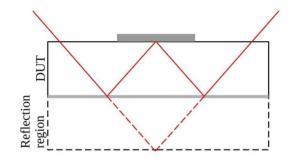
Application: Passive strip CMOS detector (low dose 55 µm design)



The mirror technique

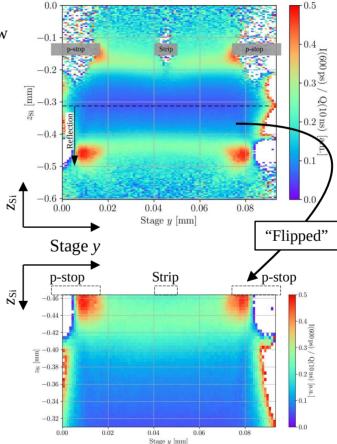
Reflection at a metallised back side can be exploited to probe below the top side metallisations with illumination from the top:

All intensity independent quantities can be probed in this way.


This technique is only available with the TPA-TCT, as it requires 3D resolution!

S. Pape et al. [arXiv:2211.10339] Techniques for the investigation of segmented sensors using the Two Photon Absorption – Transient Current Technique 30.11.2022

The mirror technique


Reflection at a metallised back side can be exploited to probe below the top side metallisations with illumination from the top:

All intensity independent quantities can be probed in this way.

This technique is only available with the TPA-TCT, as it requires 3D resolution!

S. Pape et al. [arXiv:2211.10339] Techniques for the investigation of segmented sensors using the Two Photon Absorption – Transient Current Technique 30.11.2022 Again using the passive strip CMOS detector as an example:

• Requires a metallised back side

.

dortmund

technische universität

Enables a "clean" measurement in the reflection → probing below the top side metals is possible

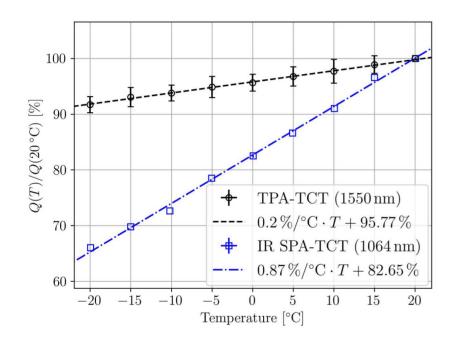

Influence of the temperature on the Two Photon Absorption – Transient Current Technique

Motivation

- Preparing study for later measurements of irradiated devices
- Profound understanding needed to disentangle temperature related effects from irradiation related ones

DUT temperature fluctuation < 0.1 K

Device under test:


Туре	Nominal thickness [µm]	Depletion voltage [V]
p-type PIN	285 µm	27 V

All shown measurements are performed at 100 V and 0% humidity.

Charge collection

DUT thickness 285 µm

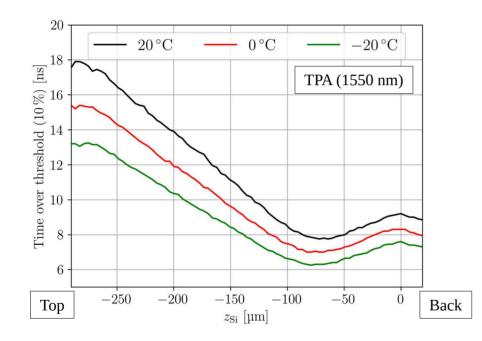
- Measured the charge collection of TPA- and SPA-TCT at different temperatures
- Charge collection decreases with temperature: less phonons available, increasing band gap (here < 1 meV)
 → for the used temperature the the dependence is linear
- Linear absorption decreases by 35 % and quadratic absorption by 8 %
- Charge generation is given by:

 $Q_{TPA}(T) \sim n(T)\beta_2(T)$ $Q_{SPA}(T) \sim n(T)\alpha(T)$

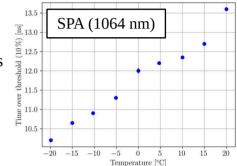
- Refractive index: $n(-23^{\circ}C) / n(20^{\circ}C) = 99.8 \% \rightarrow \text{negligible}$
 - $\rightarrow\,$ absorption coefficients dominate the loss in charge generation

Literature: $\beta_2(-23^{\circ}C) / \beta_2(17^{\circ}C) = (88 \pm 2.6) \%$

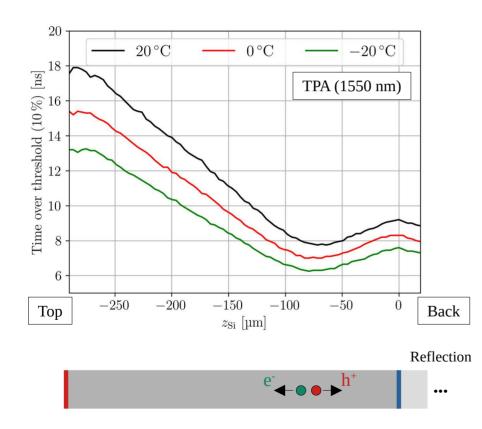
 \rightarrow in agreement with our measurement

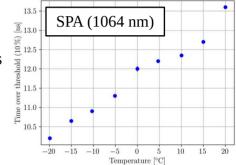

Sinclair et al.:

Temperature Dependence of the Kerr Nonlinearity and Two-Photon Absorption in a Silicon Waveguide at 1.55 μm



Charge collection time


- Time over threshold decreases with temperature from 20 °C to -20 °C by about 17 % to 27 % depending on the deposition depth
 - \rightarrow Decreased phonon population
 - \rightarrow Less scattering of the charge carriers
 - \rightarrow Increasing charge carrier mobility



Charge collection time

- Time over threshold decreases with temperature from 20 °C to -20 °C by about 17 % to 27 % depending on the deposition depth
 - \rightarrow Decreased phonon population
 - \rightarrow Less scattering of the charge carriers
 - \rightarrow Increasing charge carrier mobility

- Minimum in the Tot plot is reached, when electrons and holes need the same collection time
 - \rightarrow Closer to the back side, because holes have a lower mobility than electrons

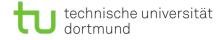
Summary

- Weighted prompt current method presented on various segmented detectors
 - → Not affected by a varying excess charge carrier generation \rightarrow corrects for clipping, reflection, and fluctuations in the laser intensity
- Yields the drift velocity times the weighting field with a 3D resolution \rightarrow accessible with TCAD!
- The technique can also be applied to SPA-TCT measurements
- **Mirror technique:** Exploiting a reflection at a metallised back side, to measure below the top side metallisation
- **Charge collection and temperature:** Q_{TPA} (-20 °C) is 8% lower than Q_{TPA} (20 °C) \rightarrow less drastic than for SPA

Federal Ministry of Education and Research

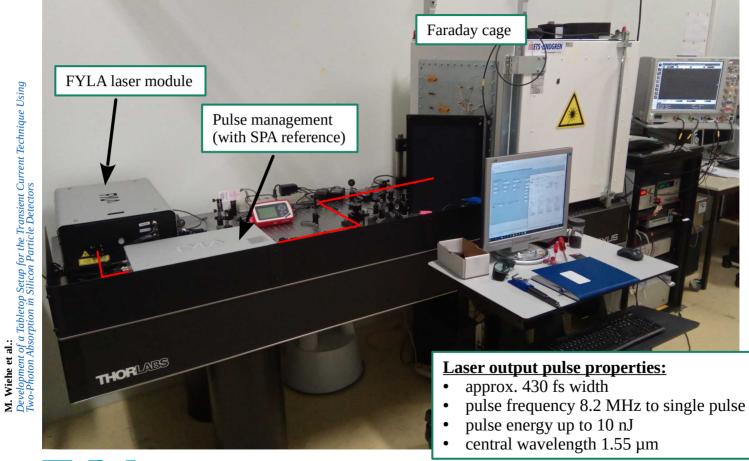
Summary

- Weighted prompt current method presented on various segmented detectors
 - → Not affected by a varying excess charge carrier generation \rightarrow corrects for clipping, reflection, and fluctuations in the laser intensity
- Yields the drift velocity times the weighting field with a 3D resolution \rightarrow accessible with TCAD!
- The technique can also be applied to SPA-TCT measurements
- **Mirror technique:** Exploiting a reflection at a metallised back side, to measure below the top side metallisation
- **Charge collection and temperature:** Q_{TPA} (-20 °C) is 8% lower than Q_{TPA} (20 °C) \rightarrow less drastic than for SPA



Federal Ministry of Education and Research

 41^{st} RD50 workshop – S. Pape


BACKUP

30.11.2022

TPA-TCT setup at CERN SSD

TPA-TCT setup: Inside of the Faraday cage

