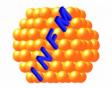
Investigation of high resistivity p-type FZ silicon diodes after ⁶⁰Co-γ irradiation (annealing behavior)

Chuan Liao^a, E. Fretwurst^a, E. Garutti^a, J.Schwandt^a

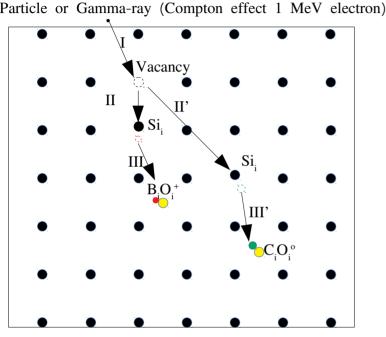

^aInstitut für Experimentalphysik, Universität Hamburg

A. Himmerlich^b, Y. Gurimskaya^b, I. Mateu^b, M. Moll^b ^bConseil européen pour la recherche nucléaire (CERN)

ACCEPTOR REMOVAL TEAM

I. Pintilie^c

^cNational Institute of Materials Physics (NIMP), Bucharest


29/11/2022 R&D 50 workshops

Bulk damage in p-type silicon sensor

Radia

ot

Universität Hamburg

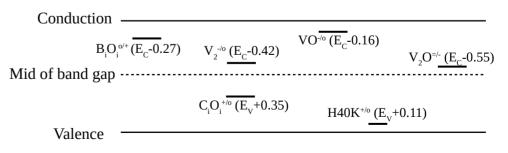
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Schematic of radiation damage in p-type silicon sensor

I: Lattice Silicon atom (Si_s) was knocked out by incident particle and Si_s got recoil energy and turns to interstitial silicon (Si_i)

II: Si, diffusion in the bulk and impact on lattice Boron atom (B)

III: B_s was knocked out Si_i and turns to interstitial Boron (B_i) and finally captured by interstitial Oxygen (O_i)

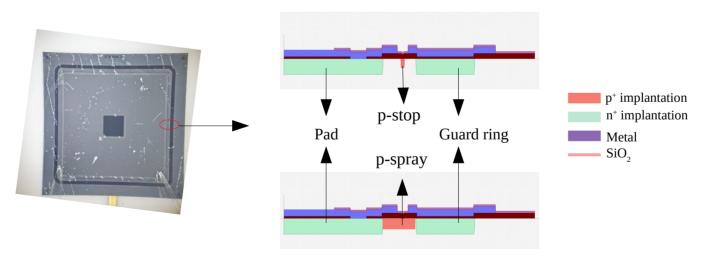

Previous work (presented on RD50 workshop [$37^{th}-39^{th}$]): 23 GeV Protons (4.3×10^{13} n /cm². N = $10^{12} \sim 10^{15}$ cm⁻³ – Doping dependence

• 23 GeV Protons $(4.3 \times 10^{13} \text{ n}_{eq}/\text{cm}^2, \text{ N}_{eff} = 10^{12} \sim 10^{15} \text{ cm}^{-3} - \text{Doping dependence})$: Comparing the decreases of N_{eff} with defect formation;

Current related damage parameter α (Hamburg model, cluster related defect); Annealing behavior

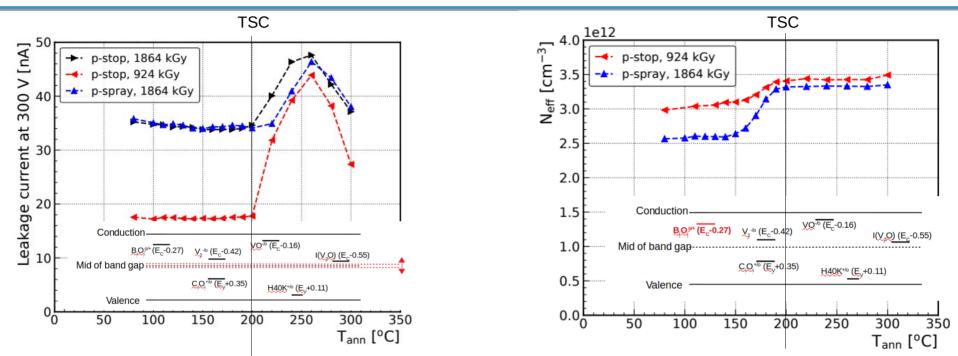
- 5.5 MeV electrons ($10^{13} \sim 10^{14} n_{eq}/cm^2 Fluence dependence$, $N_{eff} = 10^{15} cm^{-3}$): N_{aff} , α and annealing behavior comparing with proton irradiation;
- Comparing the Cz ([C] $\approx 3 \times 10^{15}$ cm⁻³) and EPI ([C] $\approx 2 \times 10^{16}$ cm⁻³) diodes • ${}^{60}CO - \gamma$?

The observed results from both literature and our works (depend on initial doping, type of radiation and fluence), on **p-type** silicon:


UΗ

Details of investigated samples (high resistivity ~3 kΩcm p-type FZ material from Hamamatsu)

Initial doping, bulk (cm ⁻³)	~3.5 × 10^{12} (\approx bulk of LGADs)			
⁶⁰ Co-γ irradiation (kGy)	94±0.96	189±3.9	924±27	1864 ± 56
Area (cm ²)	0.25			
Thickness (µm)	150			



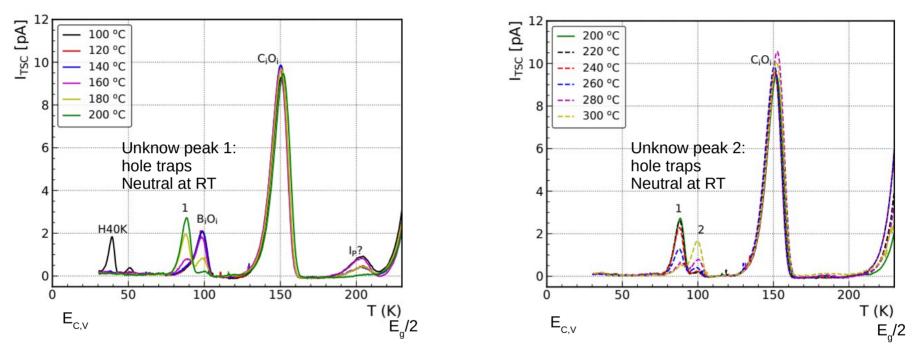
Annealing from 100 to 200 °C in steps of 10 °C, and from 200 °C to 300 °C in steps of 20 °C (during 15 min for all steps)

I-V, C-V measurements

- Leakage current (LC) at 300 V vs. $\rm T_{ann}$ (left) and $\rm N_{eff}$ vs. $\rm T_{ann}$ (right)
- I-V, C-V are measured at room temperature, N_{eff} were extracted from C-V with frequency = 500 kHz
- The LC is firstly stable with T_{ann} up to about 200 °C, then shows a a peak at about 200 °C, which possibly caused by the changes of deep trap with T_{ann}
- N_{eff} is firstly stable with T_{ann} up to about 150 °C, then increasing with T_{ann} up to 200 °C, and stable again until T_{ann} ≈ 300 °C

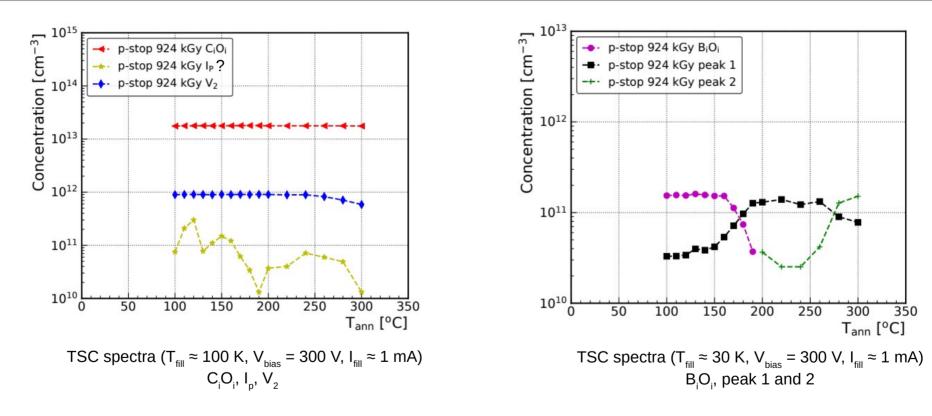
29/11/22

UΗ


Universität Hamburg

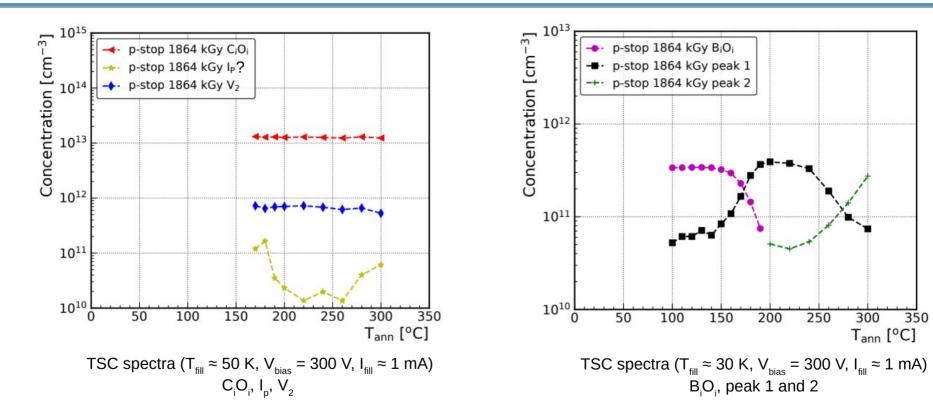
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Thermally Stimulated Current (TSC)



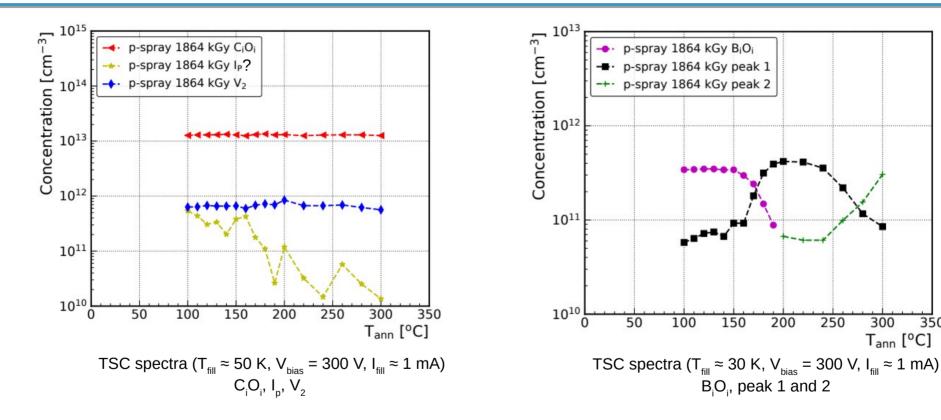
- TSC spectra ($T_{fill} \approx 30$ K, $V_{bias} = 300$ V, $I_{fill} \approx 1$ mA) for p-stop diode irradiation by ${}^{60}Co-\gamma$ with 1864 kGy. $T_{ann} = 100 \rightarrow 200 \, {}^{\circ}C$ (left) and $T_{ann} = 200 \rightarrow 300 \, {}^{\circ}C$ (right)
- H40K is eliminated by annealing when T_{ann} > 100°C
- B_iO_i is stable with T_{ann} until 150°C, then decreasing with T_{ann} disappeared at T_{ann} = 200°C meanwhile peak 1 increasing in this range. When T_{ann} > 200°C, peak 1 decreases and peak 2 increases.

29/11/22


- $C_i O_i$, V_2 stable with annealing up to 300 °C
- BiOi, peak 1 and 2 strongly correlated with each other

Concentration vs. T_{ann} (p-stop, 1864 kGy)

- $C_i O_i$, V_2 stable with annealing up to 300 °C
- BiOi, peak 1 and 2 strongly correlated with each other



Concentration vs. T_{ann} (p-spray, 1864 kGy)

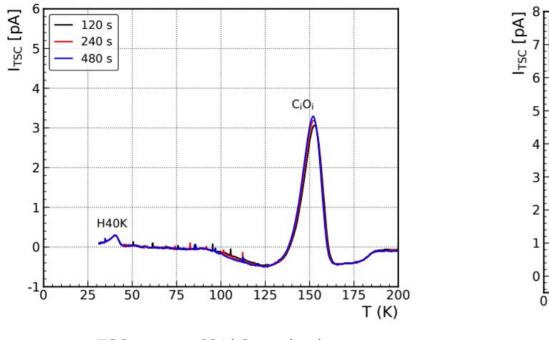
350

- C₁O₁, V₂ stable with annealing up to 300 °C
- BiOi, peak 1 and 2 strongly correlated with each other ٠

Light injection

120 s

240 s


480 s

25

50

C_iO

TSC, p-spray, 924 kGy, as-irrad

TSC, p-spray, 1864 kGy, 300 °C@15min

1 and 2

100

125

150

175

200

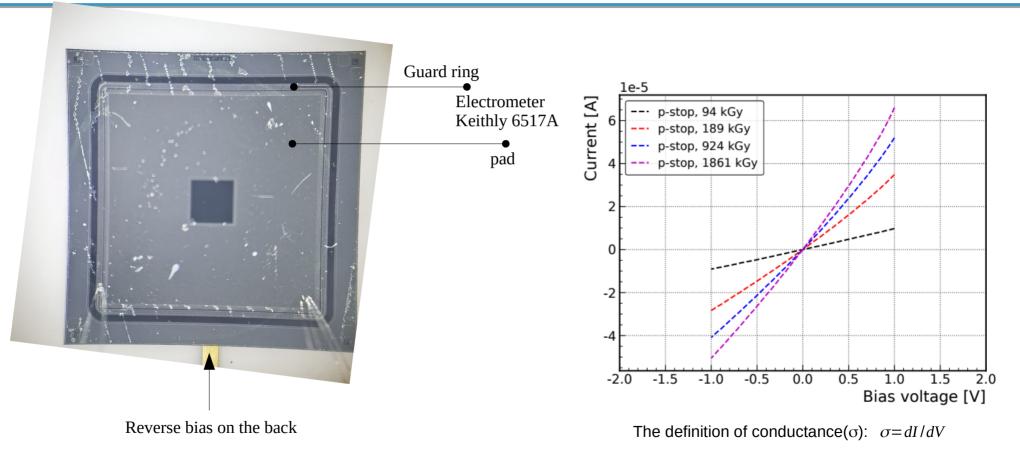
T (K)

75

- TSC spectra ($T_{fill} \approx 30$ K, $V_{bias} = 300$ V)
- Illuminated by green light (520 nm) at front (n+) hole trap filling
- Peak 1 and 2 are hole traps, and doesn't show poole frenkel effect (see back up) peak 1 is not the X-defect

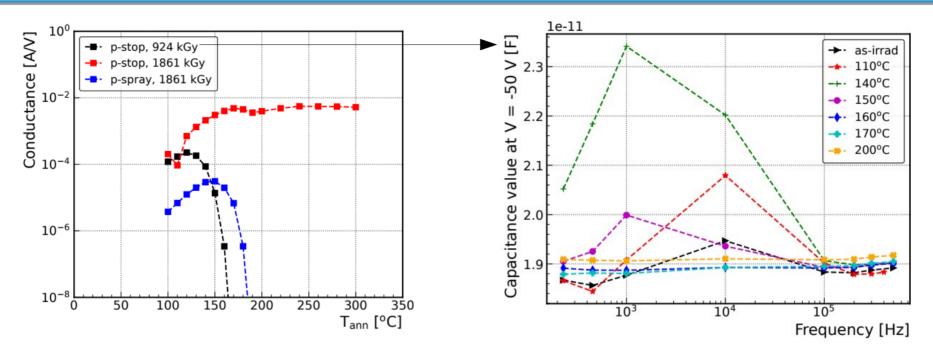
UΗ

ii.


Universität Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Surface current



Annealing behavior for surface current

- Left: Conductance vs. T_{ann} for F150P-7 (p-stop, 924 kGy), F150P-8 (p-stop, 1864 kGy) and F150Y-8 (p-spray, 1864 kGy)
- Right: Capacitance value at V = 50 V vs. frequency for different T_{ann} (p-stop, 924 kGy)
- Conductance of F150P-7 (p-stop, 924 kGy) is firstly increasing with T_{ann} and decreases for T_{ann} > 120 °C
- Conductance of F150P-8 (p-stop, 1864 kGy) is increasing with T_{ann} and saturated when $T_{ann} > 150 \text{ °C}$
- Conductance of F150Y-8 (p-spray, 1864 kGy) is firstly increasing with T_{ann} and decreases for T_{ann} > 150 °C

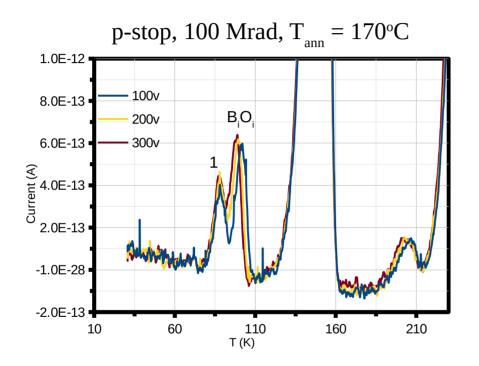
29/11/22

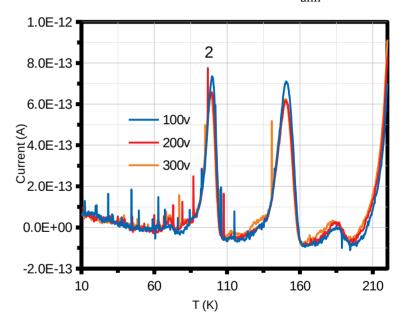
I. Results of isochronal annealing at 100 – 300 °C during 15 min, for Fz p-type diodes irradiated by 60 Co γ with dose value (924 kGy and 1864 kGy):

- a). Macroscopic measurement (I-V, C-V):
 - A strange peak appeared on saturated leakage current vs T_{ann}
 - Extracted N_{eff} from corresponded to the changes of B_iO_i after annealing

b). Microscopic measurement (TSC):

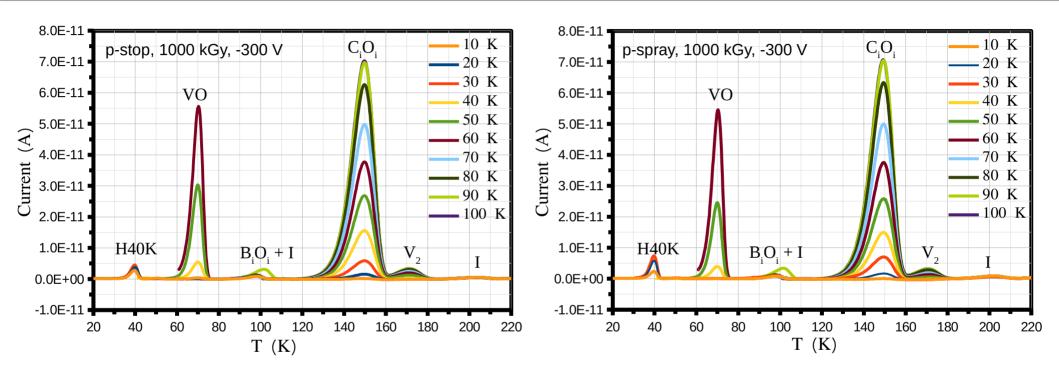
- C_iO_i and V_2 are stable up to 300 °C
- B_iO_i was annealed out from 150 to 200°C. Meanwhile, two unknown peaks (1 and 2) appeared at following annealing steps
- Peaks 1 and 2 are hole traps and neutral at room temperature
- II. Surface current:
 - Conductance increases with dose value
 - For p-stop 924 kGy and p-spray 1864 kGy diodes, conductance is first increasing, and decreasing after 120 °C and 150 °C
 - For p-stop 1864 kGy diode, conductance keeps increasing and saturated when $T_{ann} > 150 \text{ °C}$


BACKUP



TSC with different V_{bias}

p-spray, 200 Mrad, T_{ann} = 280°C



TSC measurement (T_{fill} dependent)

- p-stop diode, 1000 kGy (left) / p-spray diode, 1000 kGy (right)
- Same experimental parameters as presented before, except for $V_{heat up}$ = -300 V and T_{fill}
- The amplitude of H40K, VO, $C_i O_i$ and V_2 appeared strongly dependent on T_{fill}

