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The need for Ultra Fast Silicon Detectors

• Pile-up is one of the major challenges for tracking at the HL-LHC
• Timing information used to disentangle overlapping events
• ATLAS High-Granularity Timing Detector placed outside the ITk

2

z-vertex distribution for a single 
bunch crossing at HL-LHC 

ATLAS HGTD

Martin Gazi, 41st RD50 Workshop01/12/2022



High Granularity Timing Detector

3Martin Gazi, 41st RD50 Workshop01/12/2022

• Replacement of sensors and ASICs needed to maintain a sufficiently precise 
timing resolution
• Maximum fluence that the sensors have to sustain is 2.5 × 1015 neq cm-2

(including a safe factor of 1.5)
• Excellent understanding of radiation 

hardness of the sensors needed

Inner ring (120 mm < R < 230 mm) replaced every  2 000/fb

Middle ring (230 mm < R < 470 mm) replaced every  1 000/fb

Outer ring (470 mm < R) not replaced
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Teledyne e2v LGAD project
• Targeting track timing resolution of approx. 30-50 ps over detector lifetime 

• Time resolution benefits from high slew rate -> increased by introducing internal gain
• Impact ionization in gain layer -> boron implantation
• Pre-manufacture simulation done in TCAD

• Batch 1: LGADs and PiN diodes of the same layout 

01/12/2022

Gap in the surface 
metallisation for TCT

laser injection

(also features 
4x4 mm2 devices 

which are not shown)

6” wafers from 
Batch 1
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Teledyne e2v LGAD project - timeline

TCAD 
simulation

01/12/2022

early 2020

late 2020

early 2021

late 2021

early 2022

late 2022

Batch 1 
produced

simulation and 
submission of 

Batch 2

Batch 2 
produced

Batch 2 
testing

Neutron 
irradiation
of Batch 1
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Teledyne e2v LGAD project - devices
• LGAD epitaxial layer: 50 um thick, high resistivity
• 8 different combinations of manufacturing parameters in Batch 1 (4 presented)

• Neutron irradiation performed at the TRIGA reactor at 
the Jozef Stefan institute in Ljubljana, Slovenia
• Proton irradiation performed at MC40 cyclotron 

with 27 MeV protons in Birmingham, UK

01/12/2022
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Teledyne e2v LGAD project - devices
• LGAD epitaxial layer: 50 um thick, high resistivity
• 8 different combinations of manufacturing parameters in Batch 1 (4 presented)

• Neutron irradiation performed at the TRIGA reactor at 
the Jozef Stefan institute in Ljubljana, Slovenia
• Proton irradiation performed at MC40 cyclotron 

with 27 MeV protons in Birmingham, UK

01/12/2022
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Timing performance 1x1 mm2 LGADs
• Jitter measurements performed using a transient current technique (TCT)

• Room temperature measurement, CFD set to 50%

• Timing resolution calculated from coincidence signals from beta particles (Sr90)
• Room temperature (or -20°C for irrad. sensor), CFD set to 20%

01/12/2022

Wafer Number Normalised Dose Normalised Energy

9, 11 1.07 1.05

8 1.15 1.05

6 1.00 1.11

2, 3 1.07 1.11

0

10

20

30

40

50

60

70

0 100 200 300 400 500

Ti
m

e 
re

so
lu

tio
n/

jit
te

r [
ps

]

Bias Voltage [V]

W03 D1 - Resolution

W03 D1 - Resolution

W06 - Resolution

W08 - Resolution

W11 - Resolution

W02 A1 - Jitter

W02 A2 - Jitter

W03 5e14 - Resolution

Time resolution
of a proton-

irradiated LGAD at
5x1014 1 MeV neq cm-2

Preliminary
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Neutron irradiation – leakage current

01/12/2022

• Leakage current for 
single 1x1 mm2 devices
• Up to 4 devices 

measured per wafer 
per neutron dose
• Devices annealed 

at 60°C for 80 min.
• All measurements 

performed at -20°C

Current of unirrad. at -20°C below sensitivity!
Curve shown to illustrate BV of unirrad.

W09

Wafer Number Normalised Dose Normalised Energy

9 1.07 1.05

8 1.15 1.05

2 1.07 1.11
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Neutron irradiation – leakage current

01/12/2022

Increasing implant energy

T = -20°C

W02W09

Wafer Number Normalised Dose Normalised Energy

9 1.07 1.05

8 1.15 1.05

2 1.07 1.11

Current of unirrad. at -20°C below sensitivity!
Curve shown to illustrate BV of unirrad.
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Neutron irradiation – leakage current

01/12/2022

Increasing implant dose

T = -20°C

W09 W08W09 W08

Wafer Number Normalised Dose Normalised Energy

9 1.07 1.05

8 1.15 1.05

2 1.07 1.11

Current of unirrad. at -20°C below sensitivity!
Curve shown to illustrate BV of unirrad.
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Neutron irradiation – leakage current

01/12/2022

Higher
implant

dose

T = -20°C

Wafer Number Normalised Dose Normalised Energy

9 1.07 1.05

8 1.15 1.05

2 1.07 1.11

W09

W08

W02

Higher implant energy



13Martin Gazi, 41st RD50 Workshop

Neutron irradiation – leakage current

01/12/2022

Higher
implant

dose

T = -20°C

W09

W08

Dose 1013 cm-2 1014 cm-2 1015 cm-2 1016 cm-2

W09 2×10-9 A 1×10-8 A 5×10-8 A 3×10-7 A

W08 3×10-9 A 2×10-8 A 5×10-8 A 3×10-7 A

W02 5×10-9 A 2×10-8 A 6×10-8 A 3×10-7 A

Nominal leakage current at 40 V bias voltage (at -20°C)

Wafer Number Normalised Dose Normalised Energy

9 1.07 1.05

8 1.15 1.05

2 1.07 1.11

W02W09

W08

W02

Higher implant energy
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Reverse current damage constant α

01/12/2022

∆IVol = Ivol (Φ) − Ivol (Φ = 0) = α ⋅ Φ

• Diode reverse current per unit volume at full depletion Ivol
Ø using current at 40 V bias, corrected to 20°C

α = 4.62 × 10-17 A cm-1

α = 4.57 × 10-17 A cm-1

α = 4.54 × 10-17 A cm-1

Wafer Number Normalised Dose Normalised Energy

9 1.07 1.05

8 1.15 1.05

2 1.07 1.11
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Reverse current damage constant α

01/12/2022

∆IVol = Ivol (Φ) − Ivol (Φ = 0) = α ⋅ Φ

• Diode reverse current per unit volume at full depletion Ivol
Ø using current at 40 V bias, corrected to 20°C

α = 4.62 × 10-17 A cm-1

α = 4.57 × 10-17 A cm-1

α = 4.54 × 10-17 A cm-1

Wafer Number Normalised Dose Normalised Energy

9 1.07 1.05

8 1.15 1.05

2 1.07 1.11

Reports of LGADs with reverse
current damage constant of the 
order 9-15 × 10-17 A cm-1

(although irradiation type 
and devices differ)

Study of the radiation-induced damage 
mechanism in proton irradiated low gain

avalanche detectors and its thermal 
annealing dependence

NIMA 968 (2021) 164814
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Gain Layer depletion voltage VGL extraction
For unirradiated and low irradiation 
sensors extracted from CV (linear fit)

01/12/2022

W02 n1e13 – device 1

T = -20°C

Intersect voltage 
of linear fits give 

VGL = 27.42 V

f = 100 kHz

Note that semi-log scale makes linear fit lines bend
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Gain Layer depletion voltage VGL extraction
For unirradiated and low irradiation 
sensors extracted from CV (linear fit)

01/12/2022

For highly irradiated sensors 
extracted from IV knee (linear fit)

W02 n1e13 – device 1 W02 n1e13 – device 1

T = -20°C

Intersect voltage 
of linear fits give 

VGL = 27.42 V Intersect voltage 
of linear fits give 

VGL = 27.50 V

f = 100 kHz

Note that semi-log scale makes linear fit lines bend Effect more pronounced at higher fluences (higher current)

the same device
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Acceptor Removal Coefficient
VGL(Φ) / VGL(Φ =0) = exp(-cnΦ)

• The gain layer depletion voltage at a given 
fluence is related to the acceptor removal 
coefficient cn

• All measurements performed at -20 °C
• Not possible to extract any gain layer 

depletion voltage from devices irradiated 
to 1016 cm-2 neutron fluence 

01/12/2022

cn = 8.11 × 10-16 cm2

cn = 7.20 × 10-16 cm2

cn = 7.05 × 10-16 cm2

Fraction of active gain

Wafer Number Normalised Dose Normalised Energy

9 1.07 1.05

8 1.15 1.05

2 1.07 1.11
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Acceptor Removal Coefficient

01/12/2022

cn = 8.11 × 10-16 cm2

cn = 7.20 × 10-16 cm2

cn = 7.05 × 10-16 cm2

Wafer Number Normalised Dose Normalised Energy

9 1.07 1.05

8 1.15 1.05

2 1.07 1.11

VGL(Φ) / VGL(Φ =0) = exp(-cnΦ)

• The gain layer depletion voltage at a given 
fluence is related to the acceptor removal 
coefficient cn

• All measurements performed at -20 °C
• Not possible to extract any gain layer 

depletion voltage from devices irradiated 
to 1016 cm-2 neutron fluence 
• Depending on exact gain layer parameters, 

literature values 4-9 × 10-16 cm2, values 
below 4 × 10-16 cm2 with carbon implant

Fraction of active gain

M. Ferrero, R. Arcidiacono, M. Mandurrino, V. Sola, N. Cartiglia. 
Ultra-fast silicon detectors : design, tests, and performances (CRC Press, 2021)
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Gain of proton irradiated LGADs
• Devices proton irradiated at MC40 cyclotron with 27 MeV protons at Birmingham
• Gain measurement using TCT, comparing 

measured signal to a reference
• Showing single 1x1 mm2 LGADs with quoted

dose as equivalent 1 MeV neq cm-2

• After irradiation, gain is significantly 
lowered and is achieved at bias voltage
of several hundred volts
• Encountered issues with temperature

readings, so gain can potentially go higher
• Data to be treated as preliminary for now

01/12/2022

Preliminary

Wafer Number Normalised Dose Normalised Energy

8 1.15 1.05

6 1.00 1.11

3 1.07 1.11

1 MeV neq cm-2 dose
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Gain of proton irradiated LGADs
• Devices proton irradiated at MC40 cyclotron with 27 MeV protons at Birmingham
• Gain measurement using TCT, comparing 

measured signal to a reference
• Showing single 1x1 mm2 LGADs with quoted

dose as equivalent 1 MeV neq cm-2

• After irradiation, gain is significantly 
lowered and is achieved at bias voltage
of several hundred volts
• Encountered issues with temperature

readings, so gain can potentially go higher
• Data to be treated as preliminary for now

01/12/2022

ZOOM

Preliminary

Wafer Number Normalised Dose Normalised Energy

8 1.15 1.05

6 1.00 1.11

3 1.07 1.11

1 MeV neq cm-2 dose
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Gain of proton irradiated LGADs
• Devices proton irradiated at MC40 cyclotron with 27 MeV protons at Birmingham
• Gain measurement using TCT, comparing 

measured signal to a reference
• Showing single 1x1 mm2 LGADs with quoted

dose as equivalent 1 MeV neq cm-2

• After irradiation, gain is significantly 
lowered and is achieved at bias voltage
of several hundred volts
• Encountered issues with temperature

readings, so gain can potentially go higher
• Data to be treated as preliminary for now

01/12/2022

Preliminary

Wafer Number Normalised Dose Normalised Energy

8 1.15 1.05

6 1.00 1.11

3 1.07 1.11

1 MeV neq cm-2 dose
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Capacitance of proton irradiated LGADs
• Devices proton irradiated at MC40 cyclotron with 27 MeV protons at Birmingham
• Frequency of the measurement adjusted

after proton irradiation to measure CV
• 100 kHz for un-irradiated devices
• 5-10 kHz for proton irradiated devices

• Capacitance lower and gain layer 
depletion voltage decreases after irrad.
• Future plans: expand the range and 

extract acceptor removal from 27 MeV p+

01/12/2022

Wafer Number Normalised Dose Normalised Energy

8 1.15 1.05

6 1.00 1.11

3 1.07 1.11

Before 
irrad.

After 
irrad.
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LGAD Proton micro-beam measurements
• Measurements using a 8 MeV proton microbeam (1.5 um2) performed by IBIC 

at the Australian Nuclear Science and Technology Organisation (ANSTO)
• Motivated by use of LGADs in applications in low-LET (Linear energy transfer) 

microdosimetry
• Credits for the measurements goes to Jay Archer, Abdelrahman Hani, Vladimir 

Pan, Thuy Linh Tran, Anatoly Rozenfeld
• Using 1x1 mm2 LGAD from W24 (same implant as W02 and W03)

01/12/2022

Wafer Number Normalised Dose Normalised Energy

2, 3, 24 1.07 1.11
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LGAD Proton micro-beam measurements
• Measurements using a 8 MeV proton microbeam (1.5 um2) performed by IBIC 

at the Australian Nuclear Science and Technology Organisation (ANSTO)

01/12/2022

Wafer Number Normalised Dose Normalised Energy

2, 3, 24 1.07 1.11

Applied bias

Get gain by taking the ratio of the measured
“deposited energy” of gain and no-gain regions.
Gain lower compared to TCT.
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Compact OPMD LGAD Amplifier (COLA)
• Designed by OPMD at Oxford
• Transimpedance amplifier used 

as first stage amplifier for LGADs

01/12/2022

Stray inductance 
compensation
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Compact OPMD LGAD Amplifier (COLA)
• Designed by OPMD at Oxford
• Transimpedance amplifier used 

as first stage amplifier for LGADs

01/12/2022

• SPICE simulated gain of approx. 54 dB in the range 0.7-1.2 GHz 
• Slew rate sufficient to guarantee low jitter contribution
• Multi-channel version planned for 2023

Preliminary 
measurements
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Second batch of Te2v LGADs

01/12/2022

• Second batch of LGAD wafers produced by Teledyne e2v in the second half of 2022
• 4 different combinations of manufacturing parameters (guided by Batch 1 results)
• Wider range of layouts and arrangements

• Single devices 1x1 mm2 (variation of design parameters)
• 2x2 arrays of 1x1 mm2 devices
• 3x3 arrays of 1x1 mm2 devices
• 15x15 array of 1.3x1.3 mm2 LGADs

3x3 array for device
cross-talk measurements

Adjusted surface 
metallisation for edge-effect 

measurements with TCT  

full scale 15x15 array
with 1.3x1.3 mm2 devices



29Martin Gazi, 41st RD50 Workshop

Second batch of Te2v LGADs – first results
• First results from Wafer 20 of Batch 2 (W20B2), should be treated as preliminary
• Leakage current lower for central devices as reported by other collaborations
• Full-array current mapping procedure under development

01/12/2022

Preliminary
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Summary
• Timing performance of unirradiated and proton-irradiated Te2v LGADs
• Characterisation of neutron irradiated Te2v LGADs up to fluence of 1016 n cm-2

• Reverse current damage constant measured to be around 4.5 × 10-17 A cm-1

• Order comparable with other measurements (9-15 × 10-17 A cm-1)

• Acceptor removal coefficient after neutron irradiation cn ≈ 7 - 8 × 10-16 cm2

• Order comparable with other measurements (4-9 × 10-16 cm2), towards the higher end

• Preliminary measurement of gain of proton-irradiated devices
• Proton microbeam gain measurements 
• LGAD readout board COLA with order 50 dB gain
• Batch 2 of LGADs by Te2v produced and in testing with preliminary results shown

01/12/2022
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TCT jitter measurement setup

01/12/2022



TCT jitter measurement setup
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Santa Cruz v1.1
(1st stage amp)

LGAD/PiN
device

ND filter

FEMTO 40dB
(2nd stage amp)

Laser Optics

QD Laser
1064 nm
(behind)

01/12/2022
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Timing Measurement uncertainties

𝜎∆"# = 𝜎"$%&# + 𝜎'()*$# + 𝜎+,-# + 𝜎./01# + 𝜎./0## + 𝜎-2# + 𝜎-+3#

Jitter term of 
trigger output

Jitter term due to
the laser pulse

fluctuations

Intrinsic jitter 
of the DUT

(+ distortion 
and Landau)

Jitter of the 
amplifiers

Time-walk
term

Time quantization 
noise of the scope

01/12/2022
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Timing Measurement uncertainties

𝜎∆"# = 𝜎"$%&# + 𝜎'()*$# + 𝜎+,-# + 𝜎./01# + 𝜎./0## + 𝜎-2# + 𝜎-+3#

Jitter term of 
trigger output

Jitter term due to
the laser pulse

fluctuations

Intrinsic jitter 
of the DUT

(+ distortion 
and Landau)

Jitter of the 
amplifiers

Time quantization 
noise of the scope

≈ 𝟏. 𝟓 𝒑𝒔 𝟐

≈ 𝟑. 𝟏 𝒑𝒔 𝟐

First stage negligible
Second stage negligible

Negligible according
to the data sheet

Negligible for TCT
- Firing on the same spot
- Using a monochromatic 

laser

Time-walk
term

01/12/2022
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1mm LGAD array W02 signal – 240 V bias

01/12/2022
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Sr90 - Timing resolution setup

01/12/2022

Timing setup from Ljubljanaσ2
meas = σ2

DUT  + σ2
REF

Measurement setup: 
• Sr-90 coincidence setup, replica of the one used by colleagues at Ljubljana. 
• Trigger is done by the DUT LGAD (scintillator trigger soon to be implemented). 
• LGAD on Santa Cruz board, second-stage amp Particulars AM-01B 35dB 2GHz. 
• CFD is set at 20%. 
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Gain Layer depletion voltage VGL extraction – high Φ

01/12/2022

For highly irradiated sensors  gain layer 
depletion voltage extracted from IV knee

W08 n1e15 – device 2

Intersect voltage 
of linear fits give 

VGL = 12.42 V

W02 n1e15 – device 1
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Gain of proton irradiated devices - measurement

01/12/2022

• Some inconsistencies with temperature readings, likely due to 
the nitrogen used to decrease humidity
• Nitrogen was being fed in at room temperature and we are 

continuously flushing directly over the sensor.
• Three solutions were enacted:

• Decrease the nitrogen flow. Helped considerable but humidity started 
to increase

• Submerge ~10m of nitrogen tubing in the chiller’s bath
• Place hot glue over the PT100 temperature sensor so measurements 

are less effected by the flow of nitrogen

• Effective, however exact temperate of the LGAD still not 
accurate, hence measurements to be treated as preliminary
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Capacitance of proton irradiated LGADs - frequency

01/12/2022

- p+ irrad 5.5e14
- p+ irrad 5.5e14

- p+ irrad 5.5e14 - p+ irrad 5.5e14
- p+ irrad 5.5e14

- p+ irrad 5.5e14



41Martin Gazi, 41st RD50 Workshop

SPICE - Compact OPMD LGAD Amplifier (COLA)

01/12/2022

Cin = 2pF
Cin = 3pF
Cin = 4pF

SPICE COLA – AC gain and Rin for three 
different input capacitance values

Cin = 2pF
Cin = 3pF
Cin = 4pF

SPICE COLA – simulated PIN current Iin
(from TCAD – MIP @ 300 V) and time output


